Differentiable SAT/ASP

MATTHIAS NICKLES
SCHOOL OF ENGINEERING & INFORMATICS
NATIONAL UNIVERSITY OF IRELAND, GALWAY
Overview

• Introduction
• SAT and Answer Set Programming
• Approach outline
• Cost functions and parameter atoms for PLP
• Native algorithm
• Propagator-based approach
• Mapping to conventional Answer Set optimization
• Preliminary results
• Conclusion
Introduction (1)

• Modern SAT and ASP solvers are mature and fast inference tools
• Geared towards complex search, combinatorial and optimization problems (ASP & SAT)
• Strong foothold in industry (SAT)
• Rich, Prolog-like syntax but fully declarative (ASP)
• Non-monotonic reasoning (ASP)
• Similar solving techniques, ASP solving ≈ SAT solving + loop handling
• Closely related to Satisfiability Modulo Theories (SMT) and Constraint Programming
• First-Order logic syntax, action logics, event calculus, ... can be translated to ASP
Introduction (2)

• ASP/SAT solving is a *multi-model* approach to inference
• Solving can produce some or all models as witnesses (if input is satisfiable)
• Stable models (a.k.a. answer sets) or satisfying Boolean assignments (SAT)
• Multiple alternative models as a natural way to express non-determinism
• Models as a natural way to represent possible worlds (as for PLP)
Introduction (3)

• How can we utilize SAT/ASP solving to compute not just models but also probability distributions over models?

• We could then use these distributions directly for probabilistic inference tasks

• Idea: distribution finding as a multi-model optimization task, using a suitable cost function over multiple models

• Generalized to (in principle) arbitrary differentiable multi-model cost functions

• Various solving techniques, outlined in this talk (further methods certainly exist)

• Focus on gradient-based approaches

• Also, we use sampling, for higher efficiency: a sample (a multi-set of models in our case) represents an approximate solution of the cost function
Input logic language

• SAT: we assume DIMACS-CNF input (set of clauses)

• ASP: Ground Answer Set program consisting of a finite set of normal rules:
 \[a : - \ b_1, \ldots, b_k, \ \text{not} \ b_{k+1}, \ldots, \text{not} \ b_m. \]

• Example for an Answer Set program (before grounding, i.e., instantiating X=dilbert):

 \[
 \begin{align*}
 \text{man}(\text{dilbert}). \\
 \text{single}(X) & : - \text{man}(X), \ \text{not} \ \text{husband}(X). \\
 \text{husband}(X) & : - \text{man}(X), \ \text{not} \ \text{single}(X).
 \end{align*}
 \]

 This program has two so-called stable models ("answer sets") – the possible worlds:

 \[
 \begin{align*}
 \text{Sm1} & = \{ \text{man}(\text{dilbert}), \ \text{single}(\text{dilbert}) \} \\
 \text{Sm2} & = \{ \text{man}(\text{dilbert}), \ \text{husband}(\text{dilbert}) \}
 \end{align*}
 \]
Approach outline (1)

• Besides CNF-clauses or an Answer Set program, we require
 • a user-specified cost function
 • a user-specified set of parameter atoms

• Parameter atoms: subset of all atoms/variables which serve as random variables
• Parameter atoms carry frequencies: normalized atom counts within the sample
• Cost function: arbitrary differentiable function parameterized with a vector of parameter atom frequencies

• Idea: incrementally add models to sample until cost function value ≤ threshold Ψ
• If process guided by (partial) derivatives of the cost function wrt. parameter atoms: Differentiable SAT/ASP
Approach outline (2)

• Each time we decide about which parameter atom to add to partial assignment (the current incomplete model “under construction”): compute how this decision would influence the overall cost function

 => partial derivatives of cost function wrt. parameter atoms (as variables representing their frequencies in the incomplete sample)

• Select parameter atom and its truth value (signed literal) which minimizes derivative (steepest descent)

• In that sense, we make the iterated (multi-model) SAT/ASP solving process differentiable
Differentiable SAT/ASP

Multimodel optimization by cost-directed model sampling
Cost functions and parameter atoms for PLP (1)

• Various possibilities for cost function. For deductive probabilistic inference, we can use Mean Squared Error (MSE):

\[
\text{cost}(\theta_1, \theta_2, \ldots) := \frac{1}{n} \sum_{i=1}^{n} (\beta(\theta_i) - \phi_i)^2
\]

• Parameter atoms \(\theta_i\): atoms which carry given (user-defined) probabilities (weights) \(\phi_i\).

• Parameter atom frequencies \(\beta(\theta_i)\) updated with each sampled model.

• Weighted rules and weighted models can be rewritten as instances of this approach.

• Arbitrary MSE cost, parameter atoms, ASP/SAT rules/clauses…; no required independence assumptions.

• But of course not all cost functions and logic programs/formulas have a solution (cost=0).
The Answer Set input program (or analogously SAT formula) can contain arbitrary rules and facts.

For parameter atoms, it is sensible to add so-called \textit{spanning rules} which make the parameter atoms nondeterministic (although this is not a requirement for our algorithms).

\begin{verbatim}
0{a}1. % spanning rule for parameter atom a
0{b}1.
:- a, b. % an example for a hard rule
\end{verbatim}

MSE cost function, e.g.,:
\[\frac{1}{2} ((\beta(a) - 0.2)^2 + (\beta(b) - 0.6)^2) \]
(assigns atom a weight 0.2 and atom b weight 0.6)
Native algorithm: Diff-CDNL-ASP/SAT

- Fastest (currently known) implementation of described approach by directly enhancing SAT/ASP solving algorithm
- Current state of the art solving algorithm: CDCL/CDNL
- CDCL (Conflict-Driven Clause Learning) based on older DPLL algorithm but with clause learning capability and non-chronological backtracking
- CDNL-ASP (Conflict-Driven Nogood Learning): variant of CDNL with nogoods (think of clauses with negated literals) as basic representative concept
- Also comprises loop handling (required for non-tight Answer Set programs)
- CDNL used by Clingo/Clasp (but we’ve created an independent implementation in Scala). Suitable for SAT as well as ASP solving
- We enhanced CDNL-ASP with a new decision literal selection (branching) policy
Propagator-based approach (1)

• Previous implementation approach fast but cannot use existing ASP or SAT solver "out of the box"

• Idea: tweak a regular ASP solver's branching heuristics to decide on parameter atoms' truth values using differentiation

• Various ways to implement this, e.g., domain heuristics, external atoms, HEX?, ...

• We use Clingo's propagators; cannot directly implement branching heuristics, but can be customized to enforce dynamically created singleton clauses (representing our parameter atom truth assignments)

• Requires outer sampling loop (e.g., Python script using Clingo's Python API) - calls ASP solver multiple times until cost goal reached

• Very slow (at least with current prototypical code)
Propagator-based approach (2)

\[ps = [\text{adnumber}(\text{freqs}'a'), 'a'), \text{adnumber}(\text{freqs}'b'), 'b')] \]

\[c = (1*(0.2-ps[0][0])**2) + (1*(0.6-ps[1][0])**2)) / 2 \quad \# \text{example MSE-shaped cost function} \]
\[\# 0.6 = \text{target probability of } b \]

```python
if atom_x == "":
    return c
else:
    pxi = next(i for i,v in enumerate(ps) if v[1] == atom_x)
    return c.d(ps[pxi][0])
```

partial derivative (using automatic differentiation): if we change the frequency of atom pxi (keeping all other parameter atoms fixed), how does this influence the cost function?
for atmlit, atom in param_atoms.iteritems(): # we search for the minimum partial derivative

diff_p = __cost_ad(freqs, atom) ← call automatic differentiation (see prev slide)

if diff_p < min_diff_lit[1]:
 min_diff_lit = (atmlit, diff_p)
diff_n = -diff_p ← to simplify diff. for negated literals
if diff_n < min_diff_lit[1]:
 min_diff_lit = (-atmlit, diff_n)

branch_param_lit = min_diff_lit[0]
Propagator-based approach (4)

def propagate(self, control, changes):
 global branch_param_lit
 global param_atoms

 if branch_param_lit != sys.maxint:
 if branch_param_lit > 0:
 control.add_clause([Propagator.solver_lits[branch_param_lit]], True)
 else:
 control.add_clause([-Propagator.solver_lits[abs(branch_param_lit)]], True)

 previously computed parameter literal which moves the cost function into the desired direction

 negation
Mapping to conventional ASP optimization (1)

- Further approach to solve the multi-model cost function: map task to regular Answer Set optimization task using reification
- Reify all sample models and (non-constant) atom predicates using model indices
- In MSE case: directly solve for model probability distribution, using linear equation solving encoded in ASP
- Does not use derivatives
- Slow. But exemplifies how to translate problem to regular (single or top-k model) ASP/SAT optimization
#const nmodels = 10.
model(1..nmodels).
mcount(0..nmodels).
\{a(M)\} :- model(M). % spanning formulas
\{b(M)\} :- model(M).
:- a(M), b(M), model(M). % an example for a background knowledge rule (hard constraint)

wa(nmodels * 2 / 10). % weight a = 0.2
wb(nmodels * 6 / 10). % weight b = 0.6
fa(F) :- F \{ a(M) : model(M) \} F, mcount(F).
fb(F) :- F \{ b(M) : model(M) \} F, mcount(F).

diffa(D) :- D = (W - F)**2, wa(W), fa(F). % alternatively: D = |F - W|
diffb(D) :- D = (W - F)**2, wb(W), fb(F).
#minimize \{ DA : diffa(DA) \}. % minimize the distances betw. weights and frequencies
#minimize \{ DB : diffb(DB) \}.
Conclusion

• First approach (to our best knowledge) to differentiation of ASP and SAT solving
• General use case: multi-model optimization with custom cost functions and user-specified accuracy
• Probabilistic Logic Programming as primarily targeted (but not only) use case
• Simple and relatively fast (for a probabilistic logic without dependence restrictions) =>SUM’18
• Uses iterative Boolean assignment / answer set sampling for scalability
• Various implementation approaches, including direct (native) approach based on CDCL/CDNL or custom branching heuristics
• Alternatively, translation to plain Answer Set optimization possible (but quite slow)
• Planned work: further experiments, theoretical criteria for termination (beyond convex cost functions), further optimization of prototype implementations
Any questions?