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Logic

¢ Useful to model domains with complex relationships among
entities
¢ Various forms:

® First Order Logic
® Logic Programming
® Description Logics
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First Order Logic

* Very expressive
* Open World Assumption
¢ Undecidable
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Logic Programming

A subset of First Order Logic
Closed World Assumption
Turing complete

* Prolog

has_starship(harlock).
is_pirate(harlock).

spacePirate(X) « has_starship(X).
spacePirate(X) «+ is_pirate(X).
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Description Logics

Subsets of First Order Logic
Open World Assumption
Decidable, efficient inference

Special syntax using concepts (unary predicates) and roles
(binary predicates)

spock : Officier

kirk : Officier

Officier C FederationOfficier
JhasOfficier.FederationOfficier C FederationShip
(ussEnterprise, spock) : hasOfficier
(ussEnterprise, kirk) : hasOfficier
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Combining Logic and Probability

Logics do not handle well uncertainty
Graphical models do not handle well relationships among entities
Solution: combine the two

Many approaches proposed in the areas of Logic Programming,
Uncertainty in Al, Machine Learning, Databases, Knowledge
Representation
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Probabilistic logic programming

Probabilistic Logic Programming

Distribution Semantics [Sato (1995)]: underlies many languages

A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

The probability of a query is obtained from this distribution
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PLP under the Distribution Semantics

A PLP language under the distribution semantics with a general
syntax is Logic Programs with Annotated Disjunctions (LPADs)

Heads of clauses are disjunctions in which each atom is
annotated with a probability.

LPAD T with nclauses: T = {C;y,...,Cp}.
Each clause C; takes the form:

hit =i Byt Ty 1= b, - by,
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Probabilistic logic programming

Logic Programs with Annotated Disjunctions

spacePirate(X) : 0.8 v null : 0.2 <— has_starship(X).
spacePirate(X) : 0.7 v null : 0.3 < is_pirate(X).
has_starship(harlock).

is_pirate(harlock).

e Distributions over the head of rules

e null does not appear in the body of any rule

e Worlds obtained by selecting one atom from the head of every
grounding of each clause
® Groundings are independent of each other.
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Example Program (LPAD) Worlds

spacePirate( harlock) < has_starship(harlock).  null < has_starship(harlock).

spacePirate( harlock) < is_pirate( harlock). spacePirate(harlock) < is_pirate( harlock).
has_starship(harlock). has_starship(harlock).

is_pirate(harlock). is_pirate(harlock).

P(wy) =0.8x0.7 P(wz) =0.2x 0.7

spacePirate( harlock) < has_starship(harlock). null < has_starship(harlock).

null < is_pirate( harlock). null < is_pirate(harlock).
has_starship(harlock). has_starship(harlock).

is_pirate( harlock). is_pirate(harlock).

P(ws) =0.8 x 0.3 P(ws) =0.2x0.3

P@Q= > P@Qw)= > PQwWPw= > Pw)

weWr weWr weWr:wE=Q

e spacePirate(harlock) is true in 3 worlds
e P(spacePirate(harlock)) = 0.8 x0.7+0.2x0.7+0.8x0.3=0.,9
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PLP Online

® http://cplint.eu
* Inference (knowledge compilation, Monte Carlo)
® Parameter learning (EMBLEM)
e Structure learning (SLIPCOVER)

® https://dtai.cs.kuleuven.be/problog/

* Inference (knowledge compilation, Monte Carlo)
® Parameter learning (LFI-ProbLog)
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Probabilistic logic programming

Description Logics

e DISPONTE: “Dlstribution Semantics for Probabilistic ONTologiEs”
[Riguzzi et al. (2015)]

e Probabilistic axioms:
p: E

® p:: CC D represents the fact that we believe in the truth of C = D
with probability p.
e DISPONTE applies the distribution semantics of probabilistic logic
programming to description logics
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DISPONTE

e World w: regular DL KB obtained by selecting or not the
probabilistic axioms

e Probability of Q
P(Q) =3, P(Q.w) =3, P(QIW)P(W) =3, P(W)

* Probability of a query Q given a world w: P(Q|w) =1ifw = Q, 0
otherwise
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Probabilistic logic programming

Example

0.4 :: spock : Officier

0.3 :: kirk : Officier

0.6 :: Officier C FederationOfficier
JhasOfficier.FederationOfficier C FederationShip
(ussEnterprise, spock) : hasOfficier
(ussEnterprise, Kirk) : hasOfficier

e P(ussEnterprise : FederationShip) =
04x03x06+04x07x06+0.6x0.3x0.6=0.348
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PDL at work

® Online: http://trill-sw.eu
® |nference

e TRILL
e TRILL?
e TORNADO

¢ Offline: BUNDLE

¢ All the systems are available at http://ml.unife.it/
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Probabilistic logic programming

Reasoning Tasks

e Inference: we want to compute the probability of a query given the
model and, possibly, some evidence

¢ Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data

e Structure learning: we want to infer both the structure and the
weights of the model from data
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PLP and Probabilistic DL

Coping with Different Closure Assumptions

e When modeling real world domains sometimes it is required to
use both Open World Assumption and Closed World Assumption.

® | P languages adopt Closed World Assumption (CWA);
® DLs adopt Open World Assumption (OWA).
e Domains where different information requires different closure
assumptions, such as for example in legal reasoning, or
health-care

e Probabilistic extensions have been proposed for several of the
languages that integrate DL and LP.
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PLP and Probabilistic DL

Possible approaches

e FOProbLog [Bruynooghe et al. (2010)]

* Knowledge base composed of disjunctive clauses: a first order
formula annotated with a probability.

* Probabilities act as constraints, and a model is any distribution that
satisfies the constraints

* FOProbLog does not support default negation.

e Bayesian Description Logic Programs [Predoiu and
Stuckenschmidt (2007)]

® Based on Description Logic Programs [Grosof et al. (2003)]:
intersection of DL and LP.

® Each rule is annotated with the probability that the head is true
(false) when the body is true.

® Important expressive features are not supported: default negation
in LP rules, reasoning about unknown individuals and existential
quantification in consequent. @
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PLP and Probabilistic DL

Possible approaches

¢ Lukasiewicz’s Probabilistic DL-Programs [Lukasiewicz (2007)]
* Integrate DL-Programs [Eiter et al. (2008)] with Independent Choice
Logic (ICL) [Poole (1997)]
® DL ontology and a set of non-disjunctive LP rules
® The atoms that occur in DL axioms cannot be the head of rules.

¢ Probabilistic Disjunctive DL-Programs [Lukasiewicz et al. (2011)]

¢ Extension of Probabilistic DL-Programs [Lukasiewicz (2007)].

* The probabilistic semantics defines tight lower and upper bounds
for the probability of a conditional query b|a where a and b are
ground atoms in terms of the answer sets or well-founded model
determined by the worlds.

® The expressiveness of DL part is restricted to DL-Lite 4 ontology
(decomposable into a positive and a negative part).
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PLP and Probabilistic DL

Possible approaches

¢ Vaishak Belle [Belle (2017)] defines a system able to perform
probabilistic inference on open-universe template models using
weighted model counting.

¢ Universally quantified clauses to model open-universe information.
® |everaging existing algorithms for the clausal representation.

e DL languages have higher expressiveness when coping with
open-universe information (e.g., they allow creation of infinite
chains of anonymous individuals).

e Number restrictions and existential in the head of clauses may in
principle modeled with functions but this is still an open branch of
study.

¢ Inference on DL KBs has in many cases lower complexity.
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Probabilistic Hybrid Knowledge Bases

e Based on Hybrid Knowledge Bases (HKBs) [Motik and Rosati
(2010)], composed of:
® alogic program and
® aset of DL axioms
¢ Follows a semantics based on the logic of Minimal Knowledge
with Negation as Failure (MKNF) [Lifschitz (1991)].
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Probabilistic Hybrid Knowledge Bases

e This approach is:
e faithful — it preserves the semantics of both formalisms,
¢ tight — the DL and the LP components can contribute to the
consequences of the other component,
¢ flexible — the same predicate can be seen under both OWA and
CWA and
® decidable

e The other approaches considered in this presentation lack one or
more of these properties.
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PLP and Probabilistic DL

Minimal Knowledge with Negation as Failure

e MKNF HKBs have been given two-valued [Motik and Rosati
(2010)], and three-valued and well-founded semantics [Knorr et al.
(2011); Liu and You (2017)].

e A proof procedure, called SLG(O), has been presented in [Alferes
et al. (2013)], which is sound and complete for the well-founded
semantics

® A top-down procedure for MKNF-based HKBs that extends SLG to
deal with DL axioms.

® Axioms are handled by means of an Oracle, i.e., a DL reasoner
which can answer queries by assuming as true information not
modeled in the DL part.
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Probabilistic Hybrid Knowledge Bases

e A Probabilistic Hybrid Knowledge Base (PHKB) is a pair
K = (O, P) where O is a DISPONTE knowledge base and P is an
LPAD without function symbols.

¢ In [Alberti et al. (2016)] a PHKB’s semantics is given by first
grounding it over all the constants in the PHKB.

e A world is the deterministic ground HKB obtained by selecting, for
each clause hjy : Mj; .. .; hin,- : |_|,'nl. «~ bit,..., bim,-’ one of the
disjuncts in the head and some of the DL axioms.

e The world’s probability is the product of the probabilities of the
selected head disjuncts and the selected axioms.
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Probabilistic Hybrid Knowledge Bases

Given a world w, the probability of a query q is defined as P(q|w) = 1
if w = g and 0 otherwise.

The probability of the query is its marginal probability:

ZP (qw)= > P(w) (1)

w:wl=q
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Example 1

¢ KB K modeling the possibility to build a starship:
P = (Cy) buildAStarship: 0.6 <
hasBricks(X), ~withoutlimagination(X).
hasBricks(mirko).
(C2) hasBricks(nadia) : 0.3.
0 = ddesigned.Project C —~withoutlmagination
(mirko, tsProject) : designed
(E1) 0.4 :: tsProject : StarshipProject
StarshipProject C Project
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Example 1

e This KB has 16 worlds and the query buildAStarship is true in
those:

¢ that contain hasBricks(nadia) and
buildAStarship < hasBricks(nadia), ~withoutimmagination(nadia),
and

* one world where hasBricks(nadia) is absent and
tsProject : StarshipProject and
buildAStarship < hasBricks(mirko), ~withoutimmagination(mirko)
are present.

* P(buildAStarship) = 0.6x0.3x0.6+0.6x0.3x0.44-0.6x0.7x0.4 =
0.108 + 0.072 + 0.168 = 0.438.
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PLP and Probabilistic DL

Example 2

Nice, now | have my starship! But... is it a battleship or a simple
starship?

To answer this question one could check if there are laser heavy
cannons on my starship, but ...
.. traveling through the galaxy there are many dangers, so every
starship should have cannons.
* The information “if a starship has at least a laser heavy cannon
then it is a battleship” satisfies the first point;
* to model also the second point we need to assign a probability on
the first point.

However, battleships have many heavy cannons, i.e., the more
heavy cannons the more likely my ship is a battleship.

Not all cannons are heavy cannons, i.e., cannons have a certaln
probability to be heavy cannons. )
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PLP and Probabilistic DL

Example 2

e KBK modehng the probability that my starship is a battleship:

P = equipped(myShip, c1)
cannon(c1).
equipped(myShip, c2).
cannon(c2).
0 = 0.6 :: Jequipped.heavyCannon C battleship

0.1 :: cannon C heavyCannon
e P(battleship(myShip)) = 0.6 - 0.1 = 0.06.
e This value is independent by the number of cannons equipped.
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PLP and Probabilistic DL

Example 2

e |f we add to P the information “a cannon has probability 0.1 to be
heavy cannon”:

P = heavyCannon(X) : 0.1 «< cannon(X).
equipped(myShip, c1)
cannon(c1).
equipeeped(myShip, c2).
cannon(c2).

0o = 0.6 :: dequipped.heavyCannon C battleship
0.1 :: cannon C heavyCannon

* P(battleship(myShip)) = 0.1626.

e With 7 cannons, then P(battleship(myShip)) = 0.3417.
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PLP and Probabilistic DL

Example 3

e |f we do not consider probabilities, the previous program still can
be modeled with only the LP part.

e Let’'s consider some new information:
* We know that if a starship can fight a Star Destroyer, it has for sure
at least one heavy cannon.
* My friend han ensured me that his starship has fought a Star
Destroyer.
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PLP and Probabilistic DL

Example 3
P = heavyCannon(X) : 0.1 < cannon(X).
equiped(hanShip, c1)
cannon(c1).
0 = 0.6 :: Jequipped.heavyCannon C battleship

0.1 :: cannon C heavyCannon
JhasFought.starDestroyer C Jequipped.heavyCannon
hanShip : 3hasFought.starDestroyer

¢ Blue axioms cannot be translated into LP clauses/facts

® | don’t know neither which particular Star Destroyer he has fought
nor how many

¢ | still don’t know how many heavy cannons han’s ship is equipped
with.

* P(battleship(hanShip)) = 0.6. .Rrraugrah’

"http://starwars.wikia.com/wiki/Shyriiwook
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PLP and Probabilistic DL

Proof Procedure for Probabilistic Hybrid Knowledge
Bases

e sPHeRE (for “Probabilistic Hybrid REasoner”).
e Executes the SLG(O) proof procedure of [Alferes et al. (2013)],
extended to cope with probability by means of:
® a new operator to combine different answers,
® an extension of the PITA transformation [Riguzzi and Swift (2011)]
and
* TRILLO, an extension of the TRILL [Zese et al. (2016)] DL reasoner
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PLP and Probabilistic DL

Proof Procedure for Probabilistic Hybrid Knowledge
Bases

e PITA transformation

® Adds an extra argument to subgoals.

® The extra argument stores a BDD encoding the explanations for the
answers of the subgoal.

* Exploits some predicates that operates on such BDDs, such as
and, or, and not operators.
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PLP and Probabilistic DL

Proof Procedure for Probabilistic Hybrid Knowledge
Bases

e TRILL®

® Based on TRILL, a reasoner for DISPONTE KBs that uses the
tableau algorithm (a directed graph representing an ABox, where
each node corresponds to an individual of the KB labeled with the
concepts it belongs to and every edge a connection between
individuals labeled with roles that link the two individuals).

® Can assume atoms as true, leaving the task of controlling their truth
value to the LP part.

* Given a query, TRILLC returns a BDD representing the
explanations of the query and a set of literals assumed as true to
be checked via the same proof procedure.
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PLP and Probabilistic DL

Conclusions

* We have seen approaches to cope with open universes.

e In general, PLP can be combined with other approaches to define
powerful systems.
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PLP and Probabilistic DL

Thank you! Questions?
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PLP and Probabilistic DL
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