
Efficient inference in discrete and continuous domains for
PLP languages under the Distribution Semantics

Elena Bellodi

Department of Engineering, University of Ferrara, Italy

PLP 2019, September 21st 2019

E. Bellodi 1 / 91

Outline

1 Introduction to PLP

2 Inference under the Distribution Semantics (DS) in Discrete Domains
Exact inference
Approximate inference

3 Inference under the Distribution Semantics in Hybrid Domains
cplint Hybrid Programs (HP)

4 References

E. Bellodi 2 / 91

Introduction to PLP

Handling real world’s uncertainty

Problem: real world is uncertain and complex
Logic does not handle well uncertainty
Graphical models do not handle well relationships among entities
Solution: combine the two
Many approaches proposed in the areas of Logic Programming,
Machine Learning, Databases, Knowledge Representation

E. Bellodi 3 / 91

Introduction to PLP

Probabilistic Logic Programming (PLP)

Distribution Semantics [Sato ICLP 95]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or simply
textitworlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries)
The probability of a query is obtained from this distribution

E. Bellodi 4 / 91

Introduction to PLP

Probabilistic Logic Programming Languages under the
Distribution Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93],
Independent Choice Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et
al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
...
They differ in the way they define the distribution over logic programs

E. Bellodi 5 / 91

Introduction to PLP

Logic Programs with Annotated Disjunctions (LPADs)

sneezing(X) : 0.7 ∨ null : 0.3← flu(X).
sneezing(X) : 0.8 ∨ null : 0.2← hay_fever(X).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule, and is usually omitted

E. Bellodi 6 / 91

Introduction to PLP

Worlds for the "sneezing domain" (LPAD syntax)

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds out of 4
P(sneezing(bob)) = 0.7× 0.8+ 0.3× 0.8+ 0.7× 0.2 = 0.94

E. Bellodi 7 / 91

Inference under the DS in Discrete Domains

Inference under the Distribution Semantics

Let At be the set of all ground (probabilistic and derived) atoms in a
given LPAD program
Assume that we are given a set E ⊂ At of observed atoms (evidence
atoms)

a vector e with their observed truth values means that the evidence is
E = e

We are also given a set Q ⊂ At of atoms of interest (query atoms)
q indicates a single ground atom of interest
Different inference tasks are possible

E. Bellodi 8 / 91

Inference under the DS in Discrete Domains

Inference under the Distribution Semantics

Unconditional inference: computing the unconditional probability
P(e), the probability of evidence
Conditional or marginal inference: computing the conditional
probability distribution of every query atom given the evidence, i.e.,
computing P(q|E = e), for each q ∈ Q
Computing the probability distribution or density of the non-ground
arguments of a conjunction of literals Q = q

E. Bellodi 9 / 91

Inference under the DS in Discrete Domains

Inference under the Distribution Semantics
Example

heads(Coin):1/2; tails(Coin):1/2:- toss(Coin),\+biased(Coin).
heads(Coin):0.6; tails(Coin):0.4:- toss(Coin),biased(Coin).
fair(Coin):0.9; biased(Coin):0.1.
toss(coin).

Unconditional inference: P(heads(coin)), or P(tails(coin))

Conditional inference: P(heads(coin)|biased(coin))

E. Bellodi 10 / 91

Inference under the DS in Discrete Domains

Inference under the Distribution Semantics

The inference problem is #P-hard and for large models is intractable.
Possible solutions:

1 Exact inference
Knowledge Compilation: compile the probabilistic logic program to
an intermediate representation and then compute the probability by
Weighted Model Counting
Bayesian Network (BN) based: convert the probabilistic logic
program into a BN and apply BN inference algorithms (Meert et al.
(2010))
Lifted inference (Poole (2003)): exploits symmetries in the model to
speed up inference

2 Approximate inference

E. Bellodi 11 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation

A probabilistic logic program can be compiled into the following
intermediate representations:

Binary Decision Diagrams (BDD): De Raedt et al. (2007), cplint
(Riguzzi (2007),Riguzzi (2009)), PITA (Riguzzi and Swift (2010a))
deterministic-Decomposable Negation Normal Form circuits
(d-DNNF): ProbLog2, Fierens et al. (2015)
Sentential Decision Diagrams (SDD), Darwiche (2011)

E. Bellodi 12 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD

1 Assign Boolean random variables (r.v.) to the probabilistic rules
2 Given a query Q, compute its explanations, i.e. assignments to the

random variables that are sufficient for entailing the query
3 Let K be the set of all possible explanations
4 Build a Boolean formula fK representing K

5 Build a BDD encoding fK
6 Compute the probability of evidence from the BDD (unconditional

inference)

E. Bellodi 13 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(2,3,4) Example

For the (LPAD) program:

sneezing(X) : 0.7← flu(X).
sneezing(X) : 0.8← hay_fever(X).
flu(bob).
hay_fever(bob).

a set of covering explanations for Q = sneezing(bob) is K = {κ1, κ2}
κ1 = {(C1, {X/bob}, 1)} κ2 = {(C2, {X/bob}, 1)}
A composite choice κ is an explanation for a query Q if Q is true in
every world compatible with κ

E. Bellodi 14 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(2,3,4) Example

θ1 = X/bob

XC1θ1 → X11 From κ1,X11 = 1
XC2θ1 → X21 From κ2,X21 = 1
fK (X) = (X11 = 1) ∨ (X21 = 1)
P(Q) = P(fK (X)) = P(X11∨X21)= P(X11)+P(X21)−P(X11)P(X21)

E. Bellodi 15 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
And Now What?

Worlds are mutually exclusive, and in theory we could compute P(Q)
as
∑

w∈WT :w |=Q P(w),
BUT in practice, it is unfeasible to find all the worlds w where the
query is true

It’s easier to find explanations for the query
BUT explanations might not be mutually exclusive
they must be made mutually exclusive in order to sum up
probabilities
Binary Decision Diagrams (BDD): they split paths on the basis of the
values of binary variables, so the branches are mutually disjoint

E. Bellodi 16 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(3,4) Building a formula for the explanations

In order to use BDD, a multi-valued random variable Xij with ni

values must be converted into ni − 1 Boolean variables Xij1, ...,Xijni−1

Xij = k for k = 1, ..., ni − 1 is represented by the conjunction
Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk

Xij = ni by Xij1 ∧ . . . ∧ Xijni−1

E. Bellodi 17 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(3,4) Example

For both C1 and C2 : ni = 2
(multi-valued) X11 = 1→ (Boolean) X111

(multi-valued) X11 = 2→ (Boolean) X111

(multi-valued) X21 = 1→ (Boolean) X211

(multi-valued) X21 = 2→ (Boolean) X211

f ′K (X) = X111 ∨ X211

E. Bellodi 18 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(6) Computing the probability from a BDD

E. Bellodi 19 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to BDD
(6) Example

P(n2) = 0 · 0.2+ 1 · 0.8 = 0.8
P(n1) = P(root) = 1 · 0.7+ 0.3 · 0.8 = 0.94 = P(Q) = P(sneezing(bob))

E. Bellodi 20 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference

Idea: maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals
If a subgoal is encountered more than once, the evaluation reuses
information from the table rather than re-performing resolution
against program clauses
Tabling can be used to evaluate programs with negation
Tabling integrates closely with Prolog: a predicate p/n is evaluated
using SLDNF by default; the predicate can be made to use tabling by
the directive :- table p/n that is added by the user or compiler

E. Bellodi 21 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
PITA: Probabilistic Inference with Tabling and Answer subsumption

Introduced by Riguzzi and Swift (2010b)
PITA computes the probability of queries from LPADs with tabling
PITA builds all explanations for every subgoal encountered during a
derivation of the query
Explanations for subgoals are stored with tabling
Explanations are compactly represented using BDDs that also allow an
efficient computation of the probability
Subgoals (ground atoms) have an extra argument storing a BDD that
represents the explanations for their answers
When an answer q(x, bdd) is found, bdd represents the explanations
for q(x)

E. Bellodi 22 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
Answer Subsumption

A feature of tabling in XSB and SWI Prolog
Combine different answers for the same goal
E.g :-table path(X,Y,lattice(or/3)) means that, if two
explanations path(a,b,bdd0) and path(a,b,bdd1) are found, the
single answer path(a,b,bdd) will be stored in the table where
or(bdd0,bdd1,bdd)

E. Bellodi 23 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
PITA: Program Transformation

The first step of the PITA algorithm is to apply a program
transformation to an LPAD to create a normal logic program that
contains calls for manipulating BDDs
Prolog interface to the CUDD C library

E. Bellodi 24 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
PITA Example

:- table path(X,Y,lattice(or/3)),edge(X,Y,lattice(or/3)).

LPAD

path(X,X).
path(X,Y):- path(X,Z),edge(Z,Y).
edge(a,b):0.3.
....

PITA Transformation

path(X,X,One):- one(One).
path(X,Y,BDD):- one(One),path(X,Z,BDD0),and(One,BDD0,BDD1),

edge(Z,Y,BDD2),and(BDD1,BDD2,BDD).
edge(a,b,BDD):- one(One),get_var_n(3,[],[0.3,0.7],Var),

equality(Var,1,BDD0),and(BDD0,One,BDD).
...

E. Bellodi 25 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
PITA Example

Query: path(a,b)

:- init ,
path(? HGNC_620?,?HGNC_983?,BDD),
ret_prob(BDD ,P),
end.

E. Bellodi 26 / 91

Inference under the DS in Discrete Domains Exact inference

Tabling-based Inference
PITA Results

PITA was compared with CVE (Meert et al. (2010)) and ProbLog1
(Kimmig et al. (2008a)).

CVE transforms an LPAD into an equivalent Bayesian network and
then performs inference on the network using the variable elimination
algorithm
ProbLog employs BDDs for efficient inference

The algorithm was able to successfully solve more complex queries
than the other algorithms in most cases and it was also almost always
faster

E. Bellodi 27 / 91

Inference under the DS in Discrete Domains Exact inference

Inference Systems based on BDDs: cplint

Suite of programs for reasoning with LPADs
Inference and learning
Versions for Yap Prolog and SWI-Prolog
Distributed as a pack of SWI-Prolog. To install it, use
?- pack_install(cplint).

Available in the web application cplint on SWISH: http://cplint.eu/
Exact Inference: module PITA

E. Bellodi 28 / 91

Inference under the DS in Discrete Domains Exact inference

Hands-on: Coin example

http://cplint.eu/example/inference/coin.pl
Unconditional inference:

What is the probability that coin lands heads?
prob(heads(coin),Prob).
What is the probability that coin lands tails?
prob(tails(coin),Prob).

Conditional inference:
What is the probability that coin lands heads, given that I know it is
biased? prob(heads(coin),biased(coin),Prob).

E. Bellodi 29 / 91

http://cplint.eu/example/inference/coin.pl

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF

A tractable logical form known as Deterministic, Decomposable
Negation Normal Form, which permits some generally intractable
logical queries to be computed in time polynomial in the form
size (Darwiche (2004))
Superset of OBDDs (Ordered BDD): BDDs with a defined variable
ordering
Allows to perform unconditional, conditional and MPE inference in
ProbLog2

E. Bellodi 30 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF

A negation normal form (NNF) is a rooted directed acyclic graph in
which each leaf node is labeled with a literal, true or false, and each
internal node is labeled with a conjunction or disjunction

E. Bellodi 31 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF
Procedure

1 Ground the probabilistic logic program and convert it into an
equivalent Boolean formula φr

2 Build φe , the Boolean formula for the evidence
3 Rewrite φ = φr ∧ φe in CNF
4 Construct a weighted Boolean formula for φ
5 CNF formula → d-DNNF formula (#P hard step)
6 d-DNNF formula → aritmetic circuit (AC)
7 Compute the probability of evidence from the AC

E. Bellodi 32 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF
(5) Convert the CNF into a d-DNNF

Conversion is made by compilers: c2d (Darwiche (2004)), DSHARP
(Muise et al. (2012)), irrespective of the weighting function

E. Bellodi 33 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF
(6) Convert the d-DNNF formula into an aritmetic circuit

1 Replace all conjunctions in the internal nodes of the d-DNNF by
multiplications, and all disjunctions by summations

2 Replace every leaf node involving a literal l by a subtree consisting of
a multiplication node having two children, namely, a leaf node with an
indicator variable for the literal l and a leaf node with the weight of l
according to the weighted formula

3 Numbers in parentheses represent results of the intermediate
computations

E. Bellodi 34 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF
(6) Convert the d-DNNF formula into an aritmetic circuit

E. Bellodi 35 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation to d-DNNF
BDD vs d-DNNF

A BDD is a special kind of d-DNNF, namely, one that satisfies the
additional properties of ordering and decision
In the approach seen earlier, we can replace a d-DNNF compiler with a
BDD compiler
Computing the probability of evidence can then be done by either
operating directly on the BDD, or by converting the BDD to an
arithmetic circuit and evaluating the circuit
d-DNNFs outperform BDDs (Darwiche (2004))

E. Bellodi 36 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation by SDD

An SDD (Vlasselaer et al. (2014); Darwiche (2011)) contains two
types of nodes
Decision nodes (circles): disjunctions over mutually exclusive
sentences
Elements (paired boxes [p|s]): conjunctions between the two children

p: "prime"; s: "sub"
Elements are decision nodes’ children and each box in an element can
contain a pointer to a decision node or a terminal node, either a literal
or the constants 0 or 1

A decision node with children [p1|s1], . . . , [pn|sn] represents the
function (p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn)

Primes must form a partition: pi 6= 0 (primes are consistent),
pi ∧ pj = 0 for i 6= j (every pair of distinct primes are mutually
exclusive), and p1 ∨ . . . ∨ pn = 1 (the disjunction of all primes is valid)

E. Bellodi 37 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation by SDD

The top level decomposition has three elements, with primes representing
A ∧ B,¬A ∧ B,¬B and corresponding subs representing true, C , and

C ∧ D.

E. Bellodi 38 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation by SDD
Procedure

1 Ground the probabilistic logic program and convert it into an
equivalent propositional formula

2 Compile directly the formula into an SDD OR convert it into a
CNF Boolean formula to be compiled into an SDD

3 Compute the probability of evidence from the SDD

E. Bellodi 39 / 91

Inference under the DS in Discrete Domains Exact inference

Knowledge Compilation by SDD
Comparison of languages

Succinctness: size of the smallest compiled circuit for every Boolean
formula

d − DNNF < SDD ≤ OBDD
There exists a Boolean formula whose smallest SDD representation is
exponentially larger than its smallest d-DNNF representation, but the
smallest OBDD for any formula is at least as big as its smallest SDD

SDDs are special cases of d-DNNFs: if one replaces circle-nodes with
or-nodes, and paired-boxes with and-nodes, one obtains a d-DNNF,
with additional properties (structured decomposability and strong
determinism)
SDDs outperform d-DNNFs

E. Bellodi 40 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference

Approximate inference aims at computing the results of inference
(probability of evidence P(e)) in an approximate way so that the
process is cheaper than the exact computation of the results
Two approaches: those that modify an exact inference algorithm and
those based on sampling

Iterative deepening
k-best
Monte Carlo

E. Bellodi 41 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Iterative deepening

De Raedt et al. (2007); Kimmig et al. (2008b)
Input: an error bound ε, a depth bound d , and a query q

Construct an SLD tree for q up to depth d

Build two sets of explanations
Kl : set of composite choices corresponding to the successful proofs
present in the tree
Ku: set of composite choices corresponding to the successful and still
open proofs present in the tree

P(Kl): lower bound
P(Ku): upper bound of the exact probability

E. Bellodi 42 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Iterative deepening

If the difference P(Ku)− P(Kl) is smaller than ε, this means that a
solution with a satisfying accuracy has been found and the interval
[P(Kl),P(Ku)] is returned
Otherwise, the depth bound is increased and a new SLD tree is built
up to the new depth bound
Stops when the difference ≤ ε

E. Bellodi 43 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Iterative deepening - ProbLog syntax

E. Bellodi 44 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Iterative deepening

E. Bellodi 45 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
k-best

Uses a fixed number k of proofs to obtain a lower bound of the
probability of the query: the larger the k, the better the bound
Given k , the best k proofs are found, corresponding to the set of best
k explanations Kk

P(Kk) is a (lower) estimate of the probability of the query
Best is intended in terms of probability: an explanation is better than
another if its probability is higher
Branch and bound approach: prune a derivation if its probability
falls below that of the k-th best explanation

E. Bellodi 46 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Monte Carlo

Iterative procedure, until convergence
1 Sample a world, by sampling each ground probabilistic fact/clause in

turn
2 Check whether the query is true in the world
3 Compute the probability p̂ of the query as the fraction of samples

where the query is true

Convergence is reached when the size of the confidence interval of p̂
drops below a user-defined threshold δ
If the width of the interval < δ, it stops and returns p̂

E. Bellodi 47 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Monte Carlo

The approach is not efficient on large programs, as proofs are often
short while the generation of a world requires sampling many
probabilistic facts
Idea: generate samples lazily, by sampling probabilistic facts/clauses
only when required by a proof
In fact, it is not necessary to sample facts not needed by a proof, as
any value for them would do

E. Bellodi 48 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
Monte Carlo Implementations

ProbLog1: (Kimmig et al. (2011))
MCINTYRE (Monte Carlo INference wiTh Yap REcord) (Riguzzi
(2013a)): applies the Monte Carlo approach of ProbLog1 to LPADs
using the YAP internal database for storing all samples and using
tabling for speeding up inference
Also available in SWI-Prolog (included in the cplint suite)

E. Bellodi 49 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

Example: The following LPAD models the development of an epidemic or a
pandemic:
C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold .
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Clause C1 is transformed in:

MC (C1, 1) = epidemic : −flu(X), cold ,
sample_head([0.6, 0.3, 0.1], 1, [X],NH),NH = 1.

MC (C1, 2) = pandemic : −flu(X), cold ,
sample_head([0.6, 0.3, 0.1], 1, [X],NH),NH = 2.

E. Bellodi 50 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

If Q = epidemic , resolution matches the goal with the head of clause
MC (C1, 1).
Suppose flu(X) succeeds with X/david and cold succeeds as well.
Then

sample_head([0.6, 0.3, 0.1], 1, [david],NH)

is called.
Since clause 1 with X replaced by david was not yet sampled, a
number between 1 and 3 is sampled according to the distribution
[0.6, 0.3, 0.1] and stored in NH.
If NH = 1, the derivation succeeds and the goal is true in the sample,
if NH = 2 or NH = 3 then the derivation fails and backtracking is
performed.

E. Bellodi 51 / 91

Inference under the DS in Discrete Domains Approximate inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

This involves finding the solution X/robert for flu(X). cold was
sampled as true before so it succeeds again.
Then

sample_head([0.6, 0.3, 0.1], 1, [robert],NH)

is called to take another sample.

E. Bellodi 52 / 91

Inference under the DS in Hybrid Domains

From discrete to continuous variables

The languages presented up to now allowed the definition of discrete
random variables only, i.e. variables taking values from a finite or
countable set
Probabilistic logic programs have been recently extended to deal with
hybrid relational domains, involving both discrete and continuous
random variables
Hybrid ProbLog (Gutmann et al. (2010)), Distributional Clauses (DC)
(Gutmann et al. (2011)), extended PRISM (Islam et al. (2012)), cplint
Hybrid Programs (Alberti et al. (2017))
The continuous distributions are defined over variables in the
facts/clauses in the program, variables that take values from
uncountable sets such as that of the real numbers

E. Bellodi 53 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs (HP)

cplint HP handle both discrete and continuous probability distributions
Discrete probability distribution: applicable when the set of possible
outcomes is discrete (a coin toss or a roll of dice) and can be encoded
by a discrete list of the probabilities of the outcomes, known as a
probability mass function
Continuous probability distribution: applicable when the set of possible
outcomes can take on values in a continuous range (e.g. real
numbers, such as the temperature on a given day). Described by
probability density functions (PDF), with the probability of any
individual outcome being 0

E. Bellodi 54 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs

cplint allows the specification of probability density/mass functions
over an argument X of atoms in the head of rules
a(A,B,,X) : Density ← Body
where Density is a special atom identifying a probability distribution
on variable X and Body (optional) is a regular clause body
Example

g(X) : gaussian(X , 0, 1).

states that argument X of g(X) follows a (univariate) Gaussian
distribution with mean µ = 0 and variance σ2 = 1

E. Bellodi 55 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Gaussian distribution examples

g(X) : gaussian(X , [0, 0], [[1, 0], [0, 1]]).
states that argument X of g(X) follows a Gaussian multivariate
distribution with mean vector [0, 0] and covariance matrix[

1 0
0 1

]
.
temp(D,X) : gaussian(X , 2, 8).
states that the temperature for day D is Gaussian-distributed with
mean 2 and standard deviation 8

E. Bellodi 56 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Gaussian distribution examples

Example of a Gaussian mixture model (a probabilistic model that
assumes all the data points are generated from a mixture of a finite number
of Gaussian distributions)

heads : 0.6; tails : 0.4.
g(X) : gaussian(X , 0, 1).
h(X) : gaussian(X , 5, 2).
mix(X)← heads, g(X).
mix(X)← tails, h(X).

The argument X of mix(X) follows a distribution that is a mixture of
two Gaussians, one with mean 0 and variance 1 with probability 0.6
and one with mean 5 and variance 2 with probability 0.4.

E. Bellodi 57 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability density functions

gaussian(Var ,M,V): Var follows a Gaussian distribution with mean M and
variance V . The distribution can be multivariate if M is a list and V a list
of lists representing the mean vector and the covariance matrix

A Gaussian distribution is often used in the natural and social sciences to
represent real-valued random variables whose distributions are not known
and thery are assumed to concentrate around a mean

E. Bellodi 58 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability density functions

uniform(Var , L,U): Var is uniformly distributed in [L,U]

It represents a situation where all outcomes in a range between a minimum
and maximum value are equally likely

E. Bellodi 59 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability density functions

dirichlet(Var ,Par): it is a family of continuous multivariate probability
distributions parameterized by a vector α of positive reals. Par
specifies the α parameters

Dirichlet distributions with different α vectors

E. Bellodi 60 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability density functions

gamma(Var ,Shape, Scale): Var follows a gamma distribution with
shape parameter Shape and scale parameter Scale

k: shape parameter; θ: scale parameter

E. Bellodi 61 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability density functions

beta(Var , α, β): Var follows a beta distribution with parameters α
and β; it’s defined on the interval [0, 1]

E. Bellodi 62 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability mass functions

poisson(Var , λ): Var follows a Poisson distribution with parameter λ

Discrete probability distribution that expresses the probability of a given
number of events occurring in a fixed interval of time if these events occur
with a known constant rate (λ) and independently of the time since the last
event

E. Bellodi 63 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability mass functions

binomial(Var ,N,P): Var follows a binomial distribution with
parameters N and P

Discrete probability distribution of the number of successes in a
sequence of N independent experiments, each asking a yes-no
question; P is the success probability of a single experiment (trial)

E. Bellodi 64 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability mass functions

geometric(Var ,P): Var follows a geometric distribution with
parameter P

Discrete probability distribution which gives the probability that the
first occurrence of success requires k independent trials, each with
success probability P

E. Bellodi 65 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability mass functions

uniform(Var ,D)

Discrete probability distribution where a finite number of values
(specified in the list D) are equally likely to be observed with
probability 1/length(D)

E. Bellodi 66 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

cplint Hybrid Programs
Probability mass functions

discrete(Var ,D) or finite(Var ,D): D is a list of couples Value : Prob
assigning probability Prob to Value

E. Bellodi 67 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

Both cplint Hybrid Programs and Distributional Clauses follow (Nitti
et al. (2016)), where the semantics is based on the STP operator (S
for stochastic), a generalization of the TP operator for logic
programming
Let P be a definite program and I a Herbrand interpretation

TP(I) = {hθ|h← b1, ..., bn ∈ P, {b1θ, ..., bnθ} ⊆ I}

If the body of a rule is true in I , the head is in TP(I).

E. Bellodi 68 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

Definition (STP operator - cplint)

Let P be a probabilistic logic program. Starting from an interpretation I :

STP(I) = {h′|h : Density ← b1, . . . , bn ∈ P, {b1θ, ..., bnθ} ⊆ I

s.t. h′ = h{Var/v} with Var the continuous variable of h

and v is sampled from distribution Density}
∪

{h|Dist ← b1, . . . , bn ∈ P, {b1θ, ..., bnθ} ⊆ I

with h sampled from discrete distribution Dist}

E. Bellodi 69 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

For each probabilistic clause h : Density ← b1 . . . , bn whenever the
body b1 . . . , bn is true in I with substitution θ, a value v for the
continuous variable Var of h is sampled from the distribution Density
and the random variable hθ = h{Var/v} is added to the interpretation
Similarly for discrete and deterministic clauses
cplint HP can handle DC and Extended PRISM by translating clauses
in these languages to cplint HP clauses
cplint HP allow more expressivity freedom than DC and Extended
PRISM

E. Bellodi 70 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

An hybrid program P is a set of clauses with continuous and/or
discrete r.v. that defines a distribution P(x) over possible worlds x

The probability P(q) of a query q can be estimated using Monte-Carlo
methods: possible worlds are sampled from P(x), and P(q) is
approximated as the ratio of samples in which the query q is true
The process is based on sampling, thus ’world’ is often replaced with
sample or particle
Note: a possible world may contain a countably infinite number of
random variables in the case of programs with function symbols

E. Bellodi 71 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

Example: People position

n(N) : poisson(N, 6).
position(P,Y) : uniform(Y , 0,M)← n(N), between(1,N,P),M is 10 ∗ N.
left(A,B)← position(A,PA), position(B,PB),PA < PB.

Clause (1): the number of people n(N) is governed by a Poisson
distribution with mean λ = 6
Clause (2) models the position as a continuous random variable
uniformly distributed from 0 to M = 10N (10 times the number of
people) for each person P such that 1 ≤ P ≤ N, and N unifies with
the number of people

E. Bellodi 72 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Semantics

if N = 2, there will be 2 independent random variables position(1) and
position(2) with distribution uniform(0, 20)
{N = 2, position(1,3.1), position(2,4.5), left(1, 2)} is a possible
(complete) world
3.1 and 4.5 are uniformly sampled in [0,20]
After sampling a number of worlds, the fraction where left(1, 2) is true
is P(left(1, 2))

E. Bellodi 73 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference

Sampling full worlds is generally inefficient or may not even terminate
as possible worlds can be infinitely large
Solution: approximate inference by sampling (Nitti et al. (2016),
Alberti et al. (2017))
Inference on cplint HP can be performed by MCINTYRE (Monte Carlo
INference wiTh Yap REcord) (Riguzzi (2013b))
In presence of continuous random variables, allows to sample
arguments of goals representing continuous random variables
In this way one can build a probability density of the sampled
argument

E. Bellodi 74 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs

Unconditional inference: Monte Carlo sampling and Gibbs sampling, a
MCMC (Markov Chain Monte Carlo) method
Conditional inference: when evidence is available on ground atoms
that have continuous values as arguments, likelihood weighting or
particle filtering (Nitti et al. (2016)) to obtain samples of continuous
arguments of a goal

E. Bellodi 75 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Unconditional Inference with Monte Carlo

mc_sample_arg(: Query : atom,+Samples : int, ?Arg : var ,−Values : list).

samples Query a number of Samples times.
Arg should be a variable in Query

The predicate returns in Values a list of couples L− N where L is the list of
values of Arg for which Query succeeds in a world sampled at random and
N is the number of samples returning that list of values
If L is empty, it means that for that sample the query failed
If, in all couples L-N, L is a list with a single element, it means that the
clauses in the program are mutually exclusive, i.e., that in every sample, only
one clause for each subgoal has the body true

E. Bellodi 76 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Unconditional Inference with Monte Carlo

By querying the program
heads : 0.6; tails : 0.4.
g(X) : gaussian(X , 0, 1).
h(X) : gaussian(X , 5, 2).
mix(X) : −heads, g(X).
mix(X) : −tails, h(X).

with ?- mc_sample_arg(mix(X),10,X,L).

one gets
L = [[−1.649529159850351]− 1, [−1.1835705080559966]−
1, [−0.3929696376975151]− 1, [−0.35390713684972636]−
1, [1.1232140506496011]− 1, [4.313659663263742]−
1, [4.662640966272441]− 1, [4.68700033893297]−
1, [6.0501701402671895]− 1, [6.694841213586896]− 1]

E. Bellodi 77 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Unconditional Inference with Monte Carlo

The query
mc_sample_arg(mix(X),1000,X,L),histogram(L,Chart,[nbins(40)]).
takes 1000 samples of X in mix(X) and draws a histogram with 40
bins representing the probability density of X
See http://cplint.eu/example/inference/gaussian_mixture.pl
Other variants of mc_sample_arg, see the cplint manual
(http://cplint.eu/help/help-cplint.html#uncondq)

E. Bellodi 78 / 91

http://cplint.eu/example/inference/gaussian_mixture.pl
http://cplint.eu/help/help-cplint.html#uncondq

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Unconditional Inference with Gibbs sampling

mc_gibbs_sample(: Query : atom,+Samples : int,−Probability :
float,+Options : list)

mc_gibbs_sample_arg(: Query : atom,+Samples : int, ?Arg :
var ,−Values : list,+Options : list)

Used in the same way seen in the Monte Carlo case

E. Bellodi 79 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Conditional Inference with likelihood weighting (LW)

For each sample to be taken, likelihood weighting samples the query and
then assigns a weight to the sample on the basis of evidence

The weight is computed by deriving the evidence backward in the
same sample of the query starting with a weight of one: each time a
choice should be taken or a continuous variable sampled, if the
choice/variable has already been sampled, the current weight is multiplied by
the probability of the choice/by the density value of the continuous variable

If the value has not been sampled, it takes a sample and records it, leaving
the weight unchanged

In this way, each sample of the query is associated with a weight that
reflects the influence of evidence

E. Bellodi 80 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Conditional Inference with likelihood weighting (LW)

The probability of the query is computed as the sum of the weights of
the samples where the query is true divided by the total sum of the
weights of the samples
cplint HP randomize the choice of clauses when more than one
resolves the goal, in order to obtain an unbiased sample
mc_lw_sample(: Query : atom, : Evidence : atom,+Samples : int,−Prob :
float) samples Query a number of Samples times given that Evidence (one
or a conjunction of atoms) is true. Prob is the probability that the query is
true
mc_lw_expectation(: Query : atom,Evidence : atom,+N : int, ?Arg :
var ,−Exp : float) computes the expected value of Arg in Query given that
Evidence is true. It takes N samples of Arg in Query , weighting each
according to the evidence, and returns their weighted average

E. Bellodi 81 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Hands On

http://cplint.eu/example/figaro_coin.swinb
Immagine you have found a coin of dubious origin: it might be biased
or not so you don’t know the probability that it’ll lands heads on any
given toss.
Goal: estimating the bias of the coin and predicting consecutive coin
tosses

E. Bellodi 82 / 91

http://cplint.eu/example/figaro_coin.swinb

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Conditional Inference with Particle Filtering

When you have a dynamic model and observations on continuous
variables for a number of time points, or your evidence is represented
by many atoms, likelihood weighting has numerical stability
problems, as samples’ weight may go rapidly to 0 due to floating
point arithmetic
Particle filtering (PF) periodically resamples the individual
samples/particles so that their weight is reset to 1
Each sample constitutes a particle
In this case, evidence is a list of literals

E. Bellodi 83 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Conditional Inference with Particle Filtering

1 Prediction step: samples a new set of N samples of the query, from
the distribution

2 Weighting step: assigns to each sample x(i), i = 1...N, the weight
w(i) with the likelihood of the first element of the evidence list

3 Resampling: if the variance of the sample weights exceeds a certain
threshold, resample with replacement from the sample set, with
probability proportional to w(i) and set the weights to 1

4 After resampling, the next element of the evidence is considered. A
new weight for each particle is computed on the basis of the new
evidence element and the process is repeated until the last evidence
element

E. Bellodi 84 / 91

Inference under the DS in Hybrid Domains cplint Hybrid Programs (HP)

Inference on cplint Hybrid Programs
Conditional Inference with particle filtering

mc_particle_sample(: Query : atom, : Evidence : list,+Samples :
int,−Prob : float)
samples Query a number of Samples times given that Evidence is
true. Evidence is a list of goals. Prob is the probability that the query
is true.

E. Bellodi 85 / 91

References

References I

Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., and Zese, R. (2017). cplint
on SWISH: probabilistic logical inference with a web browser.
Intelligenza Artificiale, 11(1):47–64.

Darwiche, A. (2004). New advances in compiling cnf to decomposable
negation normal form. In Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI’04, pages 318–322,
Amsterdam, The Netherlands, The Netherlands. IOS Press.

Darwiche, A. (2011). SDD: A new canonical representation of propositional
knowledge bases. In IJCAI, pages 819–826. IJCAI/AAAI.

De Raedt, L., Kimmig, A., and Toivonen, H. (2007). Problog: A
probabilistic prolog and its application in link discovery. In
International Joint Conference on Artificial Intelligence, pages
2462–2467.

E. Bellodi 86 / 91

References

References II

Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann,
B., Thon, I., Janssens, G., and De Raedt, L. (2015). Inference and
learning in probabilistic logic programs using weighted Boolean
formulas. Theory and Practice of Logic Programming, 15:358–401.

Gutmann, B., Jaeger, M., and De Raedt, L. (2010). Extending problog
with continuous distributions. In Frasconi, P. and Lisi, F. A., editors,
Proceedings of the 20th International Conference on Inductive Logic
Programming (ILP–10), Firenze, Italy. (Accepted).

Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., and Raedt, L. D.
(2011). The magic of logical inference in probabilistic programming.
TPLP, 11(4-5):663–680.

Islam, M. a., Ramakrishnan, C. r., and Ramakrishnan, I. v. (2012).
Inference in probabilistic logic programs with continuous random
variables. Theory Pract. Log. Program., 12(4-5):505–523.

E. Bellodi 87 / 91

References

References III

Janhunen, T. (2004). Representing normal programs with clauses. In
de Mántaras, R. L. and Saitta, L., editors, Proceedings of the 16th
Eureopean Conference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia,
Spain, August 22-27, 2004, pages 358–362. IOS Press.

Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., and Rocha, R.
(2011). On the implementation of the probabilistic logic programming
language ProbLog. 11(2-3):235–262.

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., and De Raedt, L.
(2008a). On the efficient execution of problog programs. In Garcia
de la Banda, M. and Pontelli, E., editors, Logic Programming, pages
175–189, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., and De Raedt, L.
(2008b). On the efficient execution of ProbLog programs. volume
5366 of LNCS, pages 175–189.

E. Bellodi 88 / 91

References

References IV

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition.

Mantadelis, T. and Janssens, G. (2010). Dedicated tabling for a
probabilistic setting. volume 7 of LIPIcs, pages 124–133.

Meert, W., Struyf, J., and Blockeel, H. (2010). Cp-logic theory inference
with contextual variable elimination and comparison to bdd based
inference methods. In De Raedt, L., editor, Inductive Logic
Programming, pages 96–109, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Muise, C. J., McIlraith, S. A., Beck, J. C., and Hsu, E. I. (2012). Dsharp:
Fast d-DNNF compilation with sharpSAT. volume 7310, pages
356–361.

Nitti, D., De Laet, T., and De Raedt, L. (2016). Probabilistic logic
programming for hybrid relational domains. volume 103, pages
407–449. Springer Verlag.

E. Bellodi 89 / 91

References

References V

Poole, D. (2003). First-order probabilistic inference. In Proceedings of the
18th International Joint Conference on Artificial Intelligence, IJCAI’03,
pages 985–991, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Riguzzi, F. (2007). A top down interpreter for LPAD and CP-logic. In
Congress of the Italian Association for Artificial Intelligence, number
4733 in LNAI, pages 109–120. Springer.

Riguzzi, F. (2009). Extended semantics and inference for the independent
choice logic. Logic Journal of the IGPL, 17(6):589–629.

Riguzzi, F. (2013a). MCINTYRE: A Monte Carlo system for probabilistic
logic programming. 124(4):521–541.

Riguzzi, F. (2013b). MCINTYRE: A monte carlo system for probabilistic
logic programming. Fundam. Inform., 124(4):521–541.

E. Bellodi 90 / 91

References

References VI

Riguzzi, F. and Swift, T. (2010a). Tabling and Answer Subsumption for
Reasoning on Logic Programs with Annotated Disjunctions. In
Hermenegildo, M. and Schaub, T., editors, Technical Communications
of the 26th Int’l. Conference on Logic Programming (ICLP’10),
volume 7 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 162–171, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

Riguzzi, F. and Swift, T. (2010b). Tabling and answer subsumption for
reasoning on logic programs with annotated disjunctions. In ICLP
(Technical Communications), volume 7 of LIPIcs, pages 162–171.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Vlasselaer, J., Renkens, J., Van den Broeck, G., and De Raedt, L. (2014).
Compiling probabilistic logic programs into sentential decision
diagrams. pages 1–10.

E. Bellodi 91 / 91

	Introduction to PLP
	Inference under the Distribution Semantics (DS) in Discrete Domains
	Exact inference
	Approximate inference

	Inference under the Distribution Semantics in Hybrid Domains
	cplint Hybrid Programs (HP)

	References

