Exporting Prolog source code

Nicos Angelopoulos
Department of Computing,
Imperial College, London.

nicos@doc.ic.ac.uk

May 13, 2002

Abstract

In this paper we present a simple source code configuration tool.
ExLibris operates on libraries and can be used to extract from local li-
braries all code relevant to a particular project. Our approach is not
designed to address problems arising in code production lines, but rather,
to support the needs of individual or small teams of researchers who wish
to communicate their Prolog programs. In the process, we also wish to
accommodate and encourage the writing of reusable code. With consid-
eration to this aim we have set the following objectives: file-based source
development, minimal program transformation, simplicity, and minimum
number of new primitives.

1 Introduction

Prolog has been around for nearly thirty years. Its ability to survive as a general
purpose programming language can be mainly attributed to the fact that it is
complimentary to the major players in the field. Without disregard to the
many commercial products written in Prolog, the language, arguably, thrives in
academic environments, and in particular in AI and proof-of-concept computer
science research.

An important element in such projects is that the developers are only ex-
pected to write code in a part-time basis within a volatile environment. As
a result, programs evolve from few hundred lines to several thousands in an
evolutionary manner, that is, without prior overall design of the final product.
Indeed, it is seldom the case that an identifiable final product stage is ever
reached.

This is contrary to expectations in non-academic settings. As is the fact
that sharing and publishing of unfinished source code is desirable. Furthermore
tools such as the Unix make utility, (Feldman, 1979) which admittedly targets
a different, set of objectives, requires duplication of work and discourages re-
usability of Prolog code. In contrast, we present ExLibris which makes use of
the directives present in Prolog source files to overcome these problems.

A convenient method for including relatively positioned source code is by us-
ing the library alias present in most modern Prolog systems. This mechanism
is used primarily for system code that implements useful common predicates.
For example the 1lists library present in most Prolog systems defines, among
others, predicates member/2 and append/3. ExLibris extends the idea by allow-
ing, during project development, access to code from a number of home library
directories. When one wants to export the project for public use, the source files
that are relevant are bundled into a local library directory. The only change
required is that the local directory is added as a library directory in the top
source files.

This library oriented approach encourages the writing of reusable code. For
instance, predicates that accomplish generic tasks should be developed in the
home library. Furthermore, it promotes a library oriented way of thinking,
where useful code can become independent and in later stages part of the system
libraries. For example, the Pillow program (Cabeza and Hermenegildo, 1997)
has been incorporated in the current SICStus 3.9.0 release (SICStus 3.9.0, 2002).

Unlike the DERIV E system, (Brereton and Singleton, 1995) we have chosen
to use the underlying file store, and to provide in-source support for system-
dependent configuration. DERIV E stores predicates in a relational database
and uses table attributes to achieve a more holistic approach to Prolog based
software engineering.

Dependence on source files mean that in order to accommodate multiple
prolog engines and runtime loading we need to introduce some new primitives.
In this paper we present a minimum set of such primitives which we believe are
interesting in, at least, pointing some of the support needed for such tasks.

ExLibris can be used for configuring both coarse and fine grain libraries.
Coarse libraries define many predicates per file, whereas finer grains reduce
this to a possibly minimum of one predicate per file. ExLibris depends for the
grouping of source files to the primitives provided by the filesystem, that is on
the subdirectory relation.

The remaining of this paper is organised as follows. Section 2 deals with some
preliminary Prolog definitions that deal with conditional loading and tentative
dependencies of source files. Section 3, presents the functionality of ExLibris.
Section 4, provides some comments on the features, limitations, and possible
future work. Finally, Section 5 serves as the concluding section.

2 Preliminaries

The standard development and configuration phases supported by ExLibris are
shown in Fig. 1. Development happens at a project directory which, possibly,
contains a local library directory. During development, files in the project di-
rectory can use the library alias to load any of the following three: system
files, that are part of supported prolog engines, home files, that are part of the
developer’s or the developing team’s filespace, and local files, that are within
the project’s space. ExLibris is a tool that helps to create an export directory

Development

\IS(

N\ flatten

Export

a e
maplist ~ flatter

Figure 1: all sorts of libraries

that is independent of home dependencies (as illustrated in the lower part of
Fig. 1).

2.1 Conditional load predicates

Since the publication of the Prolog Iso standard (International Standard, 1995;
Deransart et al., 1996) the vast majority of systems have strove for compliance.
This has made the idea of the same prolog code running on different engine
feasible. Still minor differences exist, and it is necessary to take these into
account.

The two issues we need to address are, uniform structured prolog identifica-
tion and conditional loading. These tasks are useful in their own right so, we
collect the relevant predicates in the pl library. This has been implemented and
tested for SICStus, SWI (Wielemaker, 2002), and Yap (Yap 4.3.20, 2002).

2.1.1 pl/1

Firstly, p1 defines predicate p1/1. Its argument identifies the running prolog
system with a compound term, we refer to this term as pl-term. The name
of the term identifies the prolog system and the term’s single argument the
version, pl-version. The version should be such that the term order imposes
the relevant order on the versions. For example the terms for the three most
recent versions of the supported systems are: sicstus(3:9:0), swi(5:0:5), and
yap(4:3:20).

2.1.2 if pl/2,3

Files can then be loaded conditionally to the current system. Predicates if_pl/2,3,4
provide the means for accomplishing this, and can be called as follows:

if_pl(+PlTerms, +Call).
if_pl(+P1Name, +PlVersOps, +Call).
if_pl(+PlName, +PlVersOps, +Call, +ElseCall).

The predicate is quite general since calls Call and ElseCall can be any callable
term. Here we are interested in the cases where if _pl is used as a directive
and the calls is of the form LoadCall(... Files...). PlTerms is a single or a
list of pl-terms. PIName is the name part of a pl-term. PlVersOps is a
list of pl-version and operator pairs (P1Ver-Op). Files is a single, or a list
of source files. LoadCall/n is any of the usual load predicate such as load/1
and ensure_loaded/1. An operator is a binary operator that can be applied
to two pl-version terms. In the if_pl/2 version Fliles are loaded by calling
LoadCall, if and only if, run system’s pl-term unifies with some element of
P1Terms. In the if_pl/3 version, Files are loaded if and only if (a) the name
of the executing Prolog is identical to PIName and (b) each pl-version satis-
fies the corresponding Operator when tested against to the executing system’s
pl-version. The call is formed as Op(load-pl-version,run-pl-version).
For example :- if_pl(yap, 4.3.20-0<, library(’list/flatten’)). encountered by any
yap system older than 4.3.20 will load file flatten. Finally, in if pl/4 ElseCall
is called whenever conditions are not satisfied for executing Call.

2.2 Dependent files

Finally, we need to address a discrepancy that arises from loading code at run-
time. Unlike when using directives these situations give no easily accessible
information about the files a program depends upon. Although it seems useful
to have a directive declaring tentative dependencies such feature is not present
in any of the discussed systems.

We propose a very simple mechanism facilitated by may_load/1 directives.
:- may_load(+Files) declares that a single or a list of files may be loaded at
runtime by the program present in the same source file.

3 Export

Predicate exlibris/1 is used to create an export directory structure from the
developer’s source code. The emphasis is placed in integrating relevant parts of
private libraries. Its single argument is a list of options. The recognised options
are as follows.

dest(Destination) the destination directory where the exported files will be
copied. This should not exist prior to the call. This option does not have
a default value.

source(Sres) a single file or directory or a list of source files and directories.
Each is considered to be either an entry level source file, or a directory
containing entry level source files. An entry level file is one that a user is
expected to load directly. In the case of directories all source files within
are considered entry level source files. There is no default value for this
option.

copy(Copy) whether directories containing entry files should also be copied
recursively, Copy == recursive, or entry files should be copied individually,
Copy == selective. Default is Copy == selective.

syslib(SysLib) usually a single system library path, but a list of paths can
also be given. The provided path should point to the developing Prolog’s
system library directory. Default is the first directory given as the answer
to query ?- library_directory(L).

homelibs(HomeLibs) a list of private libraries holding source files that are
loaded from entry files or their dependents by the library alias. The
intuition is that during development these directories are defined using
library directory/1 in entry files or some appropriate start file. The
default value is [~ /prolog/1lib’].

loclib(LocLib) a path for the local library. This is considered relatively to
Destination. All referenced files in HomeLibs will be copied into LocLib.
The relative path of any such file from the appropriate HomeLib will be
recreated within LocLib. Note that this may be an existing directory
within some source directory. Default value: 1ib.

pls(Pls) a single or a list of pl-terms. Only files pertinent to systems
corresponding to these pl-terms are copied. These are identified from
if_pl/2<g directives as discussed in Section 2.1.2. The default value is for
all prologs which is equivalent to pls(-)

The exported files are identical to the development ones proviso two trans-
formations. Entry level files loose any library directory/1 definition and
instead the following lines are added on the top of each such file

% Following line added by ExLibris.
:— library_directory(’RelPathToLocLib’).

When exporting, the value of directory RelPathToLocLib is known and it is
the path to LocLib relative to the particular entry level file. The second trans-
formation is to remove any if_pl/2<3 that does not match any of the system
pl-termin Pls.

4 Discussion

Our approach uses the filesystem’s directory structure as its medium of group-
ing predicates at the level of source files. This, supports both fine and coarse

grain groupings. Examples of coarse groupings are the system libraries defin-
ing a score of predicates for source file. Whereas, fine grouping would favour
single predicate definition per source file or module files exporting a single predi-
cate. However, operations such as moving source files within the home directory
structure will need to be accommodated by future tools.

Currently, exlibris runs on SICStus v3.9.0. and Swi v4.0 or later under Unix.
Our plans are also to support the Yap and Ciao (Bueno et al., 2002) systems.
Yap does not have the absolute_file name/3 predicate or the layout option for
read_term/2, while for Ciao we still need to investigate. For SICStus, and since
layout option only provides the start line of read terms, exlibris requires that
if_pl terms are the only terms on the text line in which they appear, and also that
there are no new line characters to the end of the term (to the period). Other
operating systems may be supported via the support Prolog systems provide for
translation of Unix paths to other operating system paths. All code described
in this paper can be found at http://www.doc.ic.ac.uk/ nicos/exlibris/

A number of additional tools may be constructed that can help with keeping
projects and libraries consistent as well as facilitating library merging. For such
tasks, as is also true for other source code manipulation, it will be useful to have
a structured form of comments.

In the future we will like to implement non-recursive library copies. That is,
the relative path of a home library file is reconstructed into the exported local
library directory. This feature is currently not supported because it requires
code transformations to a degree greater than we wish the core program to
have. One possibility would be to add this as an additional tool that can flatten
out any arbitrary library while updating project source files and inter-library
dependencies.

5 Conclusions

The first contribution of this paper was to propose simple mechanisms for con-
ditional, depending on the underlying system, loading and execution, and for
declaring tentative source file dependencies.

We also provided a straight forward procedure for code configuration and
exportation. We have kept core functionalities to a minimum as to encour-
age simplicity and thus usage. The main contribution of ExLibris is that it
encourages development of reusable code.

References

Brereton, P. and Singleton, P. (1995). Deductive software building. In Estublier,
J., editor, Software Configuration Managment. ICSE SCM-4 and SCN-5
Workshops. Selected Papers, number 1005 in LNCS, pages 81-87. Springer.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., Lépez, P., and Puebla,

G. (2002). Ciao 7.1. User Manual. The CLIP Group. Technical University
of Madrid, Spain. http://www.clip.dia.fi.upm.es/Software/Ciao/.

Cabeza, D. and Hermenegildo, M. (1997). Www programming using compu-
tational logic systems (and the pillow/ciao library). In Proceedings of the
Workshop on Logic Programming and the WWW at WIWW6.

Deransart, P., Ed-Dbali, A., and Cervoni, L. (1996). Prolog: The Standard.
Springer Verlag.

Feldman, S. I. (1979). make-a program for maintaining computer programs.
Software - Practise € Experience, 9:255-265.

International Standard (1995). ISO/IEC 13211-1 (PROLOG: Part 1-general
core).

SICStus 3.9.0 (2002). User Manual. Swedish Institute of Computer Science,
Sweden. http://www.sics.se/isl/sicstus.html.

Wielemaker, J. (2002). SWI-Prolog 5.0.5. User Manual. SWI, University of
Amsterdam, The Netherlands. http://www.swi-prolog.org.

Yap 4.3.20 (2002). User Manual. LIACC/Universidade do Porto and COPPE
Sistemas/UFRJ, Portugal. http://www.cos.ufrj.br/ vitor/Yap/.

