
Exporting Prolog sour
e
ode

Ni
os Angelopoulos

Department of Computing,

Imperial College, London.

ni
os�do
.i
.a
.uk

May 13, 2002

Abstra
t

In this paper we present a simple sour
e
ode
on�guration tool.

ExLibris operates on libraries and
an be used to extra
t from lo
al li-

braries all
ode relevant to a parti
ular proje
t. Our approa
h is not

designed to address problems arising in
ode produ
tion lines, but rather,

to support the needs of individual or small teams of resear
hers who wish

to
ommuni
ate their Prolog programs. In the pro
ess, we also wish to

a

ommodate and en
ourage the writing of reusable
ode. With
onsid-

eration to this aim we have set the following obje
tives: �le-based sour
e

development, minimal program transformation, simpli
ity, and minimum

number of new primitives.

1 Introdu
tion

Prolog has been around for nearly thirty years. Its ability to survive as a general

purpose programming language
an be mainly attributed to the fa
t that it is

omplimentary to the major players in the �eld. Without disregard to the

many
ommer
ial produ
ts written in Prolog, the language, arguably, thrives in

a
ademi
 environments, and in parti
ular in AI and proof-of-
on
ept
omputer

s
ien
e resear
h.

An important element in su
h proje
ts is that the developers are only ex-

pe
ted to write
ode in a part-time basis within a volatile environment. As

a result, programs evolve from few hundred lines to several thousands in an

evolutionary manner, that is, without prior overall design of the �nal produ
t.

Indeed, it is seldom the
ase that an identi�able �nal produ
t stage is ever

rea
hed.

This is
ontrary to expe
tations in non-a
ademi
 settings. As is the fa
t

that sharing and publishing of un�nished sour
e
ode is desirable. Furthermore

tools su
h as the Unix make utility, (Feldman, 1979) whi
h admittedly targets

a di�erent set of obje
tives, requires dupli
ation of work and dis
ourages re-

usability of Prolog
ode. In
ontrast, we present ExLibris whi
h makes use of

the dire
tives present in Prolog sour
e �les to over
ome these problems.

1

A
onvenient method for in
luding relatively positioned sour
e
ode is by us-

ing the library alias present in most modern Prolog systems. This me
hanism

is used primarily for system
ode that implements useful
ommon predi
ates.

For example the lists library present in most Prolog systems de�nes, among

others, predi
ates member/2 and append/3. ExLibris extends the idea by allow-

ing, during proje
t development, a

ess to
ode from a number of home library

dire
tories. When one wants to export the proje
t for publi
 use, the sour
e �les

that are relevant are bundled into a lo
al library dire
tory. The only
hange

required is that the lo
al dire
tory is added as a library dire
tory in the top

sour
e �les.

This library oriented approa
h en
ourages the writing of reusable
ode. For

instan
e, predi
ates that a

omplish generi
 tasks should be developed in the

home library. Furthermore, it promotes a library oriented way of thinking,

where useful
ode
an be
ome independent and in later stages part of the system

libraries. For example, the Pillow program (Cabeza and Hermenegildo, 1997)

has been in
orporated in the
urrent SICStus 3.9.0 release (SICStus 3.9.0, 2002).

Unlike the DERIV E system, (Brereton and Singleton, 1995) we have
hosen

to use the underlying �le store, and to provide in-sour
e support for system-

dependent
on�guration. DERIV E stores predi
ates in a relational database

and uses table attributes to a
hieve a more holisti
 approa
h to Prolog based

software engineering.

Dependen
e on sour
e �les mean that in order to a

ommodate multiple

prolog engines and runtime loading we need to introdu
e some new primitives.

In this paper we present a minimum set of su
h primitives whi
h we believe are

interesting in, at least, pointing some of the support needed for su
h tasks.

ExLibris
an be used for
on�guring both
oarse and �ne grain libraries.

Coarse libraries de�ne many predi
ates per �le, whereas �ner grains redu
e

this to a possibly minimum of one predi
ate per �le. ExLibris depends for the

grouping of sour
e �les to the primitives provided by the �lesystem, that is on

the subdire
tory relation.

The remaining of this paper is organised as follows. Se
tion 2 deals with some

preliminary Prolog de�nitions that deal with
onditional loading and tentative

dependen
ies of sour
e �les. Se
tion 3, presents the fun
tionality of ExLibris.

Se
tion 4, provides some
omments on the features, limitations, and possible

future work. Finally, Se
tion 5 serves as the
on
luding se
tion.

2 Preliminaries

The standard development and
on�guration phases supported by ExLibris are

shown in Fig. 1. Development happens at a proje
t dire
tory whi
h, possibly,

ontains a lo
al library dire
tory. During development, �les in the proje
t di-

re
tory
an use the library alias to load any of the following three: system

�les, that are part of supported prolog engines, home �les, that are part of the

developer's or the developing team's �lespa
e, and lo
al �les, that are within

the proje
t's spa
e. ExLibris is a tool that helps to
reate an export dire
tory

2

local . . .

project 1

file 1 lib

meta

maplist

. . .

. . .

. . .

system

lib

lists

/

. . .

. . .

system

lib

lists

/

. . .

. . .

. . .

. . .

. . .

. . .

local . . .

project 1

file 1 lib

meta

maplist

home
/

home

lib

list

flatten

. . .

. . .

. . .

. . .

list

flatten

Development

Export

Figure 1: all sorts of libraries

that is independent of home dependen
ies (as illustrated in the lower part of

Fig. 1).

2.1 Conditional load predi
ates

Sin
e the publi
ation of the Prolog Iso standard (International Standard, 1995;

Deransart et al., 1996) the vast majority of systems have strove for
omplian
e.

This has made the idea of the same prolog
ode running on di�erent engine

feasible. Still minor di�eren
es exist, and it is ne
essary to take these into

a

ount.

The two issues we need to address are, uniform stru
tured prolog identi�
a-

tion and
onditional loading. These tasks are useful in their own right so, we

olle
t the relevant predi
ates in the pl library. This has been implemented and

tested for SICStus, SWI (Wielemaker, 2002), and Yap (Yap 4.3.20, 2002).

2.1.1 pl/1

Firstly, pl de�nes predi
ate pl/1. Its argument identi�es the running prolog

system with a
ompound term, we refer to this term as pl-term. The name

of the term identi�es the prolog system and the term's single argument the

version, pl-version. The version should be su
h that the term order imposes

the relevant order on the versions. For example the terms for the three most

re
ent versions of the supported systems are: si
stus(3:9:0), swi(5:0:5), and

yap(4:3:20).

3

2.1.2 if pl/2,3

Files
an then be loaded
onditionally to the
urrent system. Predi
ates if pl/2,3,4

provide the means for a

omplishing this, and
an be
alled as follows:

if_pl(+PlTerms, +Call).

if_pl(+PlName, +PlVersOps, +Call).

if_pl(+PlName, +PlVersOps, +Call, +ElseCall).

The predi
ate is quite general sin
e
alls Call and ElseCall
an be any
allable

term. Here we are interested in the
ases where if pl is used as a dire
tive

and the
alls is of the form LoadCall(: : : F iles : : :). P lTerms is a single or a

list of pl-terms. P lName is the name part of a pl-term. P lV ersOps is a

list of pl-version and operator pairs (PlVer-Op). Files is a single, or a list

of sour
e �les. LoadCall/n is any of the usual load predi
ate su
h as load/1

and ensure loaded/1. An operator is a binary operator that
an be applied

to two pl-version terms. In the if pl/2 version Files are loaded by
alling

LoadCall, if and only if, run system's pl-term uni�es with some element of

PlTerms. In the if pl/3 version, Files are loaded if and only if (a) the name

of the exe
uting Prolog is identi
al to P lName and (b) ea
h pl-version satis-

�es the
orresponding Operator when tested against to the exe
uting system's

pl-version. The
all is formed as Op(load-pl-version,run-pl-version).

For example :- if pl(yap, 4.3.20-�<, library('list/
atten')). en
ountered by any

yap system older than 4.3.20 will load �le flatten. Finally, in if pl/4 ElseCall

is
alled whenever
onditions are not satis�ed for exe
uting Call.

2.2 Dependent �les

Finally, we need to address a dis
repan
y that arises from loading
ode at run-

time. Unlike when using dire
tives these situations give no easily a

essible

information about the �les a program depends upon. Although it seems useful

to have a dire
tive de
laring tentative dependen
ies su
h feature is not present

in any of the dis
ussed systems.

We propose a very simple me
hanism fa
ilitated by may load/1 dire
tives.

:- may load(+Files) de
lares that a single or a list of �les may be loaded at

runtime by the program present in the same sour
e �le.

3 Export

Predi
ate exlibris/1 is used to
reate an export dire
tory stru
ture from the

developer's sour
e
ode. The emphasis is pla
ed in integrating relevant parts of

private libraries. Its single argument is a list of options. The re
ognised options

are as follows.

dest(Destination) the destination dire
tory where the exported �les will be

opied. This should not exist prior to the
all. This option does not have

a default value.

4

sour
e(Sr
s) a single �le or dire
tory or a list of sour
e �les and dire
tories.

Ea
h is
onsidered to be either an entry level sour
e �le, or a dire
tory

ontaining entry level sour
e �les. An entry level �le is one that a user is

expe
ted to load dire
tly. In the
ase of dire
tories all sour
e �les within

are
onsidered entry level sour
e �les. There is no default value for this

option.

opy(Copy) whether dire
tories
ontaining entry �les should also be
opied

re
ursively, Copy == re
ursive, or entry �les should be
opied individually,

Copy == sele
tive. Default is Copy == sele
tive.

syslib(SysLib) usually a single system library path, but a list of paths
an

also be given. The provided path should point to the developing Prolog's

system library dire
tory. Default is the �rst dire
tory given as the answer

to query ?- library dire
tory(L).

homelibs(HomeLibs) a list of private libraries holding sour
e �les that are

loaded from entry �les or their dependents by the library alias. The

intuition is that during development these dire
tories are de�ned using

library dire
tory/1 in entry �les or some appropriate start �le. The

default value is ['~/prolog/lib'℄.

lo
lib(Lo
Lib) a path for the lo
al library. This is
onsidered relatively to

Destination. All referen
ed �les in HomeLibs will be
opied into Lo
Lib.

The relative path of any su
h �le from the appropriate HomeLib will be

re
reated within Lo
Lib. Note that this may be an existing dire
tory

within some sour
e dire
tory. Default value: lib.

pls(P ls) a single or a list of pl-terms. Only �les pertinent to systems

orresponding to these pl-terms are
opied. These are identi�ed from

if pl/2,3 dire
tives as dis
ussed in Se
tion 2.1.2. The default value is for

all prologs whi
h is equivalent to pls()

The exported �les are identi
al to the development ones proviso two trans-

formations. Entry level �les loose any library dire
tory/1 de�nition and

instead the following lines are added on the top of ea
h su
h �le

% Following line added by ExLibris.

:- library_dire
tory('RelPathToLo
Lib').

When exporting, the value of dire
tory RelPathToLo
Lib is known and it is

the path to Lo
Lib relative to the parti
ular entry level �le. The se
ond trans-

formation is to remove any if pl/2,3 that does not mat
h any of the system

pl-term in P ls.

4 Dis
ussion

Our approa
h uses the �lesystem's dire
tory stru
ture as its medium of group-

ing predi
ates at the level of sour
e �les. This, supports both �ne and
oarse

5

grain groupings. Examples of
oarse groupings are the system libraries de�n-

ing a s
ore of predi
ates for sour
e �le. Whereas, �ne grouping would favour

single predi
ate de�nition per sour
e �le or module �les exporting a single predi-

ate. However, operations su
h as moving sour
e �les within the home dire
tory

stru
ture will need to be a

ommodated by future tools.

Currently, exlibris runs on SICStus v3.9.0. and Swi v4.0 or later under Unix.

Our plans are also to support the Yap and Ciao (Bueno et al., 2002) systems.

Yap does not have the absolute file name/3 predi
ate or the layout option for

read term/2, while for Ciao we still need to investigate. For SICStus, and sin
e

layout option only provides the start line of read terms, exlibris requires that

if pl terms are the only terms on the text line in whi
h they appear, and also that

there are no new line
hara
ters to the end of the term (to the period). Other

operating systems may be supported via the support Prolog systems provide for

translation of Unix paths to other operating system paths. All
ode des
ribed

in this paper
an be found at http://www.do
.i
.a
.uk/ ni
os/exlibris/

A number of additional tools may be
onstru
ted that
an help with keeping

proje
ts and libraries
onsistent as well as fa
ilitating library merging. For su
h

tasks, as is also true for other sour
e
ode manipulation, it will be useful to have

a stru
tured form of
omments.

In the future we will like to implement non-re
ursive library
opies. That is,

the relative path of a home library �le is re
onstru
ted into the exported lo
al

library dire
tory. This feature is
urrently not supported be
ause it requires

ode transformations to a degree greater than we wish the
ore program to

have. One possibility would be to add this as an additional tool that
an
atten

out any arbitrary library while updating proje
t sour
e �les and inter-library

dependen
ies.

5 Con
lusions

The �rst
ontribution of this paper was to propose simple me
hanisms for
on-

ditional, depending on the underlying system, loading and exe
ution, and for

de
laring tentative sour
e �le dependen
ies.

We also provided a straight forward pro
edure for
ode
on�guration and

exportation. We have kept
ore fun
tionalities to a minimum as to en
our-

age simpli
ity and thus usage. The main
ontribution of ExLibris is that it

en
ourages development of reusable
ode.

Referen
es

Brereton, P. and Singleton, P. (1995). Dedu
tive software building. In Estublier,

J., editor, Software Con�guration Managment. ICSE SCM-4 and SCN-5

Workshops. Sele
ted Papers, number 1005 in LNCS, pages 81{87. Springer.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., L�opez, P., and Puebla,

6

G. (2002). Ciao 7.1. User Manual. The CLIP Group. Te
hni
al University

of Madrid, Spain. http://www.
lip.dia.�.upm.es/Software/Ciao/.

Cabeza, D. and Hermenegildo, M. (1997). Www programming using
ompu-

tational logi
 systems (and the pillow/
iao library). In Pro
eedings of the

Workshop on Logi
 Programming and the WWW at WWW6.

Deransart, P., Ed-Dbali, A., and Cervoni, L. (1996). Prolog: The Standard.

SpringerVerlag.

Feldman, S. I. (1979). make-a program for maintaining
omputer programs.

Software - Pra
tise & Experien
e, 9:255{265.

International Standard (1995). ISO/IEC 13211-1 (PROLOG: Part 1{general

ore).

SICStus 3.9.0 (2002). User Manual. Swedish Institute of Computer S
ien
e,

Sweden. http://www.si
s.se/isl/si
stus.html.

Wielemaker, J. (2002). SWI-Prolog 5.0.5. User Manual. SWI, University of

Amsterdam, The Netherlands. http://www.swi-prolog.org.

Yap 4.3.20 (2002). User Manual. LIACC/Universidade do Porto and COPPE

Sistemas/UFRJ, Portugal. http://www.
os.ufrj.br/ vitor/Yap/.

7

