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Abstract. We present r..eal, a library that integrates the R statistical environment

with Prolog. Due to R’s functional programming affinity the interface introduced

has a minimalistic feel. Programs utilising the library syntax are elegant and suc-

cinct with intuitive semantics and clear integration. In effect, the library enhances

logic programming with the ability to tap into the vast wealth of statistical and

probabilistic reasoning available in R. The software is a useful addition to the ef-

forts towards the integration of statistical reasoning and knowledge representation

within an AI context. Furthermore it can be used to open up new application areas

for logic programming and AI techniques such as bioinformatics, computational

biology, text mining, psychology and neuro sciences, where R has particularly

strong presence.

1 Introduction

Logic programming provides a powerful framework for reasoning with complex, struc-

tured data and is an important vehicle for AI research. The Prolog language is a popular

example of logic programming that provides a query driven inference mechanism. Pro-

log has been shown to be useful in diverse AI application domains, including machine

learning, natural language, data-base interfacing, web services, and program analysis.

Often, Prolog applications require computing aggregate properties of data. Common op-

erations, such as computing the mean or standard deviation, can be easily programmed

in Prolog. More complex operations, such as clustering, pattern extraction or likelihood

computations can be hard to implement efficiently.

The R environment [15] is an open source software package for statistical data

analysis. R is widely used by the statistical and data mining communities, with ma-

jor applications in areas such as bioinformatics. The R environment provides a set of

effective tools for data storage and manipulation, namely of arrays, and it implements a

well developed programming language, S [5]. Although S is not a pure declarative lan-

guage, it contains a strong functional programming component. R also has an excellent



packaging and distribution system through which a multitude of researchers and pro-

grammers make their code available to the community. The comprehensive R archive

network (CRAN, http://cran.r-project.org/) contains a vast selection of

contributed code that deals with the full gamut of statistical inference and data analy-

sis. Examples include several implementations of the pagerank algorithm [8], machine

learning tools such as support vector machines [10] and several clustering tools [13].

Prolog has been the main practical vehicle of logic programming with a number

of open source implementations available to the community. YAP [7] and SWI [21]

are two such systems. The first is widely accepted as one of the fastest open source

Prolog implementation in, among other areas, machine learning and particularly in in-

ductive logic programming (ILP) [18]. Machine learning is one application where it is

natural to interface a Prolog system to R, namely to extend the ILP paradigm with re-

gression capabilities [1]. The SWI Prolog system is the most widely used open source

Prolog with many educational, research and industrial installations. It is well regarded

for its stability and extensive palette of libraries. The software presented here has been

developed to run on both of these Prolog systems, and is made available as open source

software in the hope that it can be widely adopted and become a standard that enhances

Prolog’s capabilities.

A further motivation for integrating R with logic programming stems from the ob-

servation that traditionally, work on logic programming has focused in representing

crisp knowledge. More recent work on the interplay between knowledge representation

and statistical inference has attracted substantial interest in recent years. Work in this

area includes the PRISM system and its EM-based parameter algorithm [16], Stochas-

tic logic programs with an MCMC structure learning system [2] and the FAM algo-

rithm [9], the ProbLog language and system [12] with a variety of learning algorithms

and CLP(BN ) [6], with EM learning and an interface to Aleph [18]. The interface to

R allows the integrated statistical-logic inference systems access to a wide range of tools

from random number generators to sophisticated algorithms for probabilistic inference.

Our work, the r..eal library, overcomes significant shortcomings present in earlier

attempts to interface Prolog to R [1, 4]. The first approach, YapR, used the C interface

to pass R commands as sequences of characters with little conversion. In the second

approach, r session, the interface provided an expression based communication via an

independent R process to which the operating system channelled I/O from Prolog. This

approach was more flexible, but inefficient and hard to maintain across operating sys-

tems. The new approach, r..eal, introduces a completely new design that provides a

tightly integrated interface to R for the Prolog programmer. In our approachR is invoked

as a shared operating system library while the communication of large data between

Prolog and R is facilitated by C code utilising the C-interfaces for the two systems.

We argue that critical to Prolog’s success as a vehicle for AI research is its ability

to address statistical aspects of knowledge representation and reasoning. Consider one

domain which is currently experiencing a rapid expansion: computational biology. In

this domain, vast volumes of data need to be interpreted and resulting knowledge to be

represented.R packages such as Bioconductor [11] are among the most successful tools

in this area, but they lack the knowledge representation strengths of Prolog. Thus, by

combining logic programming with the extensive statistical functionality of R, we hope



to contribute to progress in this field while engaging more of the logic programming

community in this area of research.

The rest of the paper is organised as follows. Section 2 presents the developed in-

terface. Data representation in R and Prolog and the translation process is described in

Section 3. Section 4 shows some illustrative examples and the conclusions are sum-

marised in Section 5.

2 Interface

R..eal enables the communication between the Prolog system and R. The R environment

executes as an operating system library: from the Prolog point of view, R is just another

set of functions; from the R point of view, Prolog is the top-level. The user interface is

designed to satisfy the following requirements:

– Minimality: ideally, most interactions should be performed through a small number

of predicates.

– R Flavour: using the interface should be as close as possible to the standard usage

of R. It should feel as if we are writing R code. To do so, most common R constructs

should just work.

– Prolog Flavour: the interface should not require the user program to construct a se-

quence of characters to be interpreted by R. Instead, it should be about Prolog terms

that are constructed and manipulated by Prolog code.

Arguably, the two last goals are incompatible, given the conceptual and syntactic

differences between Prolog and R. R..eal tries to be as close to R as possible, but re-

specting the observation that ultimately one has to construct a valid Prolog program.

The library leaves the management of R variables to the programmer. On backtrack-

ing there is no removal of variables from the R environment. In practice, this is rarely

a limitation, particularly since R variables can be destructively assigned new values.

In our experience, the strengths of Prolog search through solutions spaces, merge well

with a sequential application of R functions that can provide statistical computations.

2.1 Access Predicates

The R language uses <- as the assignment operator. In order to be as close to possible

to R syntax, r..eal uses <-/1 and <-/2 to channel the bulk of the interactions between

Prolog and R. The predicate names are defined as prefix and infix operators, respec-

tively. The <-/1 predicate sends an R expression, represented as a ground Prolog term,

to R. The <-/2 operator facilitates bi-directional communication. If the left-hand side

is a free variable, the library assumes that we are passing data from R to Prolog. If the

left-hand side is bound, r..eal assumes that we are passing data or function calls to R.



The library implements two communication mechanisms:

– arbitrary R expressions of function calls which possibly embed data items within

their arguments, are transformed from Prolog terms to strings and passed to R for

native parsing

– Prolog lists and R vectors are passed by r..eal through C code that understands how

Prolog and R represent data;

More concretely, the calling modes for <-/2 are:

+Rvar <- +PLvalue

-PLvar <- +Rvar

-PLvar <- +Rexpr

+Rexpr1 <- +Rexpr2

In the first, top-most mode, the C interface is employed to transfer Prolog data value(s),

PLvalue, to an R variable identified by Rvar. In the second mode, r..eal instantiates

the Prolog variable PLvar to the contents of the R variable Rvar. In the second mode

Rexpr is evaluated in R and its result is unified to Prolog variable PLvar. In the

current implementation this is done by first assigning the result to a hidden R variable

and then using the second mode to copy this onto PLvar. In the last mode, r..eal will

pass Rexpr1 <- Rexpr2 to R subject to the syntactic conversions described in the

next section. R..eal will automatically distinguish between the four modes. A variable

in the left side of the operator is taken to be a Prolog variable, an atom is recognised as

an R variable (Rvar above) and a ground term is considered to be an R expression. On

the right side, a list or a number are taken as Prolog data, an atom corresponding to a

known R variable is recognised as such and all other terms are R expressions.

In the following example a list of 6 Prolog integers is passed to the R variable v and

then passed to Prolog variable V.

?- v <- [0,1,1,2,3,5],

V <- v.

V = [0, 1, 1, 2, 3, 5].

In the arity 1 version of the assignment predicate, if the argument can be interpreted

as a known R variable then it is printed using the R function call print(). The fol-

lowing example prints the contents of an R variable (v) that has been passed a list of

Prolog integers.

?- v <- [0,1,1,2,3,5],

<- v.

[1] 0 1 1 2 3 5

When r..eal cannot establish that the argument of <-/1 is an R variable, it passes the

argument to R as an expression right after all syntactic transformations have been com-

pleted. This allows for calling of functions to which the return value is of no interest



to the user. For instance the value of the plotting function is often ignored. The follow-

ing example uses R’s plot() function to plot 3 points with x-coordinates [1, 2, 3] and
y-coordinates [4, 5, 6]. The plot appears on R’s default plot display.

<- plot( [1,2,3], [4,5,6] ).

3 Data Representation in R

R recognises several types of objects:

– Floating point numbers, integers, Boolean and ascii values (character strings) pro-

vide the base types.

– Lists or vectors are the main forms of serialised compound objects.

– Arrays are multi-dimensional compoundobjects with two dimensional arrays treated

as special arrays called matrices.

– R supports several useful data-types: dotted-pairs are used to represent lists; the :

operator is supported for ranges, and NULL objects represent uninitialised R ob-

jects.

– Programs can be constructed by using symbols, functions or closures, and environ-

ments.

Regarding base types, there are matches between floating point and integers in R and

Prolog. Boolean values can be matched to true and false atoms. Character strings

are traditionally represented by Prolog as lists of character codes. These principles cor-

respond to the following rules:

Prolog --- R

integer <-> integer

float <-> double

atom <-> char

char -> char

true/false <-> logical

The three other major types supported by the interface are symbols, vectors and

matrices. Symbols areR identifiers used for variable and function names. They naturally

map to Prolog atoms and they are contextually distinguished from chars. Compound

objects are described in detail next.

3.1 Vectors and Matrices

Vectors are a key generic data type in R. It is important to make two observations on the

nature of vectors in R. First, thatR vectors are typed and second that they have attributes.

R has six basic vector types: logical, integer, real, complex, string (or character) and raw.

The other major data types in R include lists, expressions and functions. As an example,

the R variable v, defined by

?- v <- as..integer(c(1,2,3)).



is of type integer vector and its contents are the values 1, 2 and 3. Note that c() is a

generic method in R. The default function of this method is to combine its arguments

into a vector. A vector naturally translates to a list in Prolog. Multi-dimensional arrays

are mapped to lists of lists. This principle works both ways: Prolog lists are mapped

to vectors, and lists of lists to matrices (which are 2 dimensional arrays in R parlance).

R..eal provides two main ways to pass Prolog data to R. The more efficient method is

by using the C interface while the alternative method constructs a string representation

of an R command. The former method is accessible to the user via the mode of <-/2

in which Prolog data is passed to an R variable. Goals have the following form, where

PLvalue is the Prolog data and Rvar is the R variable.

+Rvar <- +PLvalue

This mode is implemented in C and transfers via C data from Prolog to R. The type

of values of the vector or matrix is taken to be the type of the first data element of

the PLvalue. An example of passing a list of the integers between 1 and 100 to an

R variable (i), printing the first ten elements through R and then passing the vector

back to Prolog after adding 1 to each number follows:

?- findall( I, between(1,100,I), Is ),

i <- Is,

<- iˆ[1:10], % prints via R

Js <- as..integer(i+1).

[1] 1 2 3 4 5 6 7 8 9 10

Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],

Js = [2, 3, 4, 5, 6, 7, 8, 9, 10|...].

3.2 Object Types

When passing Prolog objects to R, r..eal attempts to build the R structure by extrapo-

lating the object type from the type of the first element in the Prolog structure. If later

on this breaks down, the structure is rebuilt if the type that introduced the failure can be

used for the overall data structure.

For example, the Prolog list in the following query contains a float value in its

third position. As Prolog is untyped, we do not have this information when the list

starts being transferred across. Instead, at the start of passing the list through, the first

element is inspected and the list is assumed to contain integers. At the third element,

upon encountering a float value, the work done so far is scrapped and the more general

type is used to translate the list to a vector of float values.

?- r <- [1,2,3.2,4],

<- r,

R <- r.

[1] 1.0 2.0 3.2 4.0

R = [1.0, 2.0, 3.2, 4.0].



3.3 The Expression Mechanism

Data appearing in an arbitrary R expression is parsed and placed into a string that will

then be passed from Prolog to R for evaluation. For instance, in the following example

the c() combinator function is used to combine 5 values into an R vector before print-

ing it and then pasting all vector elements to a single value vector (s). For illustration

purposes we also include a goal that combines the two function calls (assignment to

R variable t).

?- state <- c("tas","sa","qld","nsw"),

<- state,

s <-paste(state,collapse="+"),

t <-paste(c("tas","sa","qld","nsw"),collapse="+"),

<- s,

<- t.

[1] "tas" "sa" "qld" "nsw"

[1] "tas+sa+qld+nsw"

[1] "tas+sa+qld+nsw"

The implementation of r..eal recognises that the expression to be assigned to R variable

t is not a single Prolog data term but a number of R function calls, so it transforms this

expression into a string containing an R expression. Note that when using this interface

it is convenient to represent R chars by Prolog list of codes, as in the above example.

Passing long objects through the expression mechanism is both inefficient and can

easily lead to buffer limitations as it is only intended as a mechanism for passing func-

tion calls on existing R objects. R..eal circumvents both these limitations by automat-

ically detecting Prolog lists and c() terms and passing them via a hidden R variable

which is then substituted in the call passed for evaluation to R. The temporary name of

the hidden variable is selected so as not to clash with the current R name-space.

For instance, the following code generates a list of 50, 000 elements and computes

the mean of its elements via a call to R through the expression mechanism. Without the

use of hidden variables this call would generate a resource error and even shorter lists

would take much longer to transfer. The example code that follows was executed on

SWI-Prolog 6.3.0 on a Linux 11.10 desktop having a dual core 3.16 GHz processor.

?- findall(I, between(1,50000,I), Is),

time( A <- mean(Is) ).

% 181 inferences,0.002 CPU in 0.002 seconds

(100% CPU,75597 Lips)

Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],

A = 25000.5.

In the above calls, A <- mean(Is) becomes t <- Is, A <- mean(t).



3.4 Syntactic Issues

There are syntactic conventions in R which result in non-parsable Prolog code. Notably

function and variable names are allowed to contain dots, square brackets are used to

access parts of vectors and arrays, and functions are allowed empty argument tuples.

We have introduced syntax which allows for easy translation between Prolog and R.

Prolog constructs are converted by the library as follows:

– R code often uses the ‘.’ symbol with function and variable names. As this syntax

conflicts with standard Prolog usage, r..eal allows the use of the operator ‘..’, e.g.:

as..integer(c(1,2)) => as.integer(c(1,2))

The library’s name is a word play on the ‘..’ operator.

– R allows matrix subscripts. In the style of BProlog [22], r..eal uses the ‘ˆ’ operator:

aˆ[2] => a[2]

– R allows ranges over subscripts, say a[,,2] which in R is a way of to refer to all

the values of the first and second dimension of a. R..eal uses * for this purpose:

aˆ[*,*,2] => a[,,2]

Note that r..eal follows R conventions to access arrays.

– We map the ‘$’ R operator to a Prolog library operator (op(400,yfx,$)). In R,

$ is one of the possible ways in which parts of vectors, matrices, arrays and lists

can be extracted or replaced. In most contexts there is no ambiguity so the operator

can be used freely, however in some situations it might be necessary to quote.

a$val => a$val or 'a$val' => a$val

– R..eal uses (.) to denote R functions with zero arity:

dev..off(.) => dev.off()

– The R NULL value is coded as the empty list.

– Simple R functions can be coded by using the Prolog implication operator ‘:-’:

(f(x) :- (...)) => f(x) (...)

This is only advised for very small functions, and does not support conditionals yet.

– As mentioned previously, lists of lists are converted to matrices. In contrast to the

flexibility of R, all levels of the lists must have the same length.

– Prolog represents character strings as lists of integers. It is thus impossible to dis-

tinguish strings from genuine lists of integers appearing in arbitrary R expressions.

We define ‘+’ as a prefix operator to identify strings.

source(+"String") => source("String")

– Some R operators should be quoted in Prolog:

a '%*%' b => a %*% b

The majority of R operators can be used unquoted as they are defined as infix operators

and present no issues. Finally, expressions that r..eal cannot translate can always be

passed as Prolog atoms or strings.
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Fig. 1. Left: pie-chart example of a Prolog list of integers. Right: plotting two sequences of 50

random numbers as X and Y coordinates.

4 Applications

4.1 Plot Drawing

Visualising data is a particular strength of R, whereas Prolog systems traditionally have

only limited access to graphics. The r..eal interface enables access to the extensive fa-

cilities of R. Simple plots such as scatter plots, histograms, box plots and pie charts

can be easily drawn for Prolog data objects. In Figure 1 a pie chart and a scatter plot

are shown. In the first example a list of integers is passed and plotted as a pie-chart,

where each integer indicates the relative area of each slice. The following is the code

for drawing the pie-chart shown in the LHS of Fig. 1.

?- cars <- [1, 3, 6, 4, 9],

<- pie(cars).

The next example, also from Fig. 1, shows how to create a plot of 50 random samples

whose coordinates have been drawn from a normal distribution (rnorm()). The coor-

dinates are stored in R variables x and y before being plotted on a new plotting window

created with the x11() function. Over twenty different probability distributions are

present in R, with more available in add-on packages.

?- <- set..seed(1),

y <- rnorm(50),

x <- rnorm(y),

<- x11(width=5,height=3.5),

<- plot(x,y).

A third plotting example is shown in Figure 2. In this case, the nested outer product

of two vectors defined implicitly using the column notation (0:9) is computed. The

results are then tabled and plotted. Labels are passed to the plot via variables instantiated

to character strings. The generating code is as follows:
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Fig. 2. Tabled nested outer product of 0 : 9 to itself.

?- d <- outer( 0:9, 0:9 ),

fr <- table(outer(d, d, +"-")),

Xl = "Determinant", Yl = "Frequency",

fr..names <- as..numeric(names(fr)),

<- plot(fr..names,fr,type=+"h",xlab=+Xl,ylab=+Yl).

4.2 Interacting with Datasets

Interfacing to R allows access to a large variety of data formats. As an example, consider
the comma-separated values (csv) format file trees91.csv:

C,N,CHBR,REP,LFBM,STBM,RTBM,LFNCC,STNCC,RTCACC,LFKCC,STKCC,...

1,1,CL6,1,0.43,0.13,0.29,1.84,0.4,0.96,0.13,0.06,0.23,0.3,...

1,1,CL7,1,0.4,0.15,0.25,1.82,0.37,0.95,0.18,0.06,0.22,0.22,...

1,2,A1,9,0.45,0.2,0.21,1.54,0.96,0.69,0.16,0.08,0.3,0.35,...

...

The first line contains headers, and the remaining lines contain data in a tabular format,

separated by commas. Reading the file into an R variable (tree) is done by simply

calling:

?- tree <- read..csv(file="trees91.csv",

sep=",",head='TRUE').

For instance, to get the column names in a Prolog list we can do:

?- X <- names(tree).

X = ['C','N,'CHBR','REP'|...].
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Fig. 3. Reading csv data. Left: histogram of LFBM column. Right: box plot of LFBM column.

The $ operator is used to access columns of the read table:

?- X <- tree$'LFBM'.

X = [0.43,0.4,0.45,0.82,0.52,1.32,0.9,1.18,0.48|...].

It is straightforward to obtain and plot a histogram of a specific column (LHS, Fig. 3):

?- X <- hist(tree$'LFBM').

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

This will both fill X with the histogram and plot it in the graphical interface (RHS,

Fig. 3). Plotting can be avoided when passing the FALSE value to the argument plot,

while the histogram can also be plotted without any value being explicitly returned by

using <-/1:

?- X <- hist(tree$'LFBM', plot = 'FALSE').

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

?- <- hist(tree$'LFBM').

The same plot can be saved in a PDF file. The function pdf() opens a new graphics

device with output to the named PDF file, while the R function dev.off() closes the

graphics device that was opened last.



?- <- pdf(+"plot.pdf"),

X <- hist(tree$'LFBM'),

<- dev..off(.).

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

The data can be displayed in a variety of different formats, for example as box plots

(RHS, Fig.3).

?- Main="Stem BioMass in different C02 environments",

Y = "BioMass of Stems",

<- boxplot(tree$'STBM', main=+Main, ylab=+Y).

4.3 Pagerank on Prolog programs

We have so far seen how Prolog can command R and pass data to it. We can further

observe that Prolog programs are term structures themselves, suggesting that we might

want to apply a variety of well known statistical algorithms to the analysis of Pro-

log programs. The next example shows an application where we take advantage of the

respective strengths of Prolog and R. The goal is to find the most important, or cross-

referenced, procedure in a Prolog program by using a graph algorithm on a network

representing the call dependencies of the program under investigation. We use the pop-

ular pagerank algorithm [14] and its implementation in R’s igraph package [8]. We

apply our analysis on the source code of the ILP program Aleph [18].

The first building block of our program visits the Prolog source and constructs a

graph where the nodes are the predicates used by Aleph.We define procedureparse/2

to collect all edges in a source file:

parse(File, Nodes) :-

open(File, read, S),

findall(Node, clause_to_nodes(S, Node), Nodes),

close(S).

The program scans every clause in the file. For each clause, it first maps the head

and every sub-goal in the body to an integer corresponding to its defining predicate.

Then, it creates an edge between every sub-goal and the head. As an example, in the

following clause

subtract([E|T], D, R) :-

memberchk(E, D), !,

subtract(T, D, R).

the program will first map subtract/3 to 0 and memberhck/2 to 1 and then gen-

erate the graph {1 7→ 0, 0 7→ 0}. As R’s graph() function prefers to receive the graph

as a list of nodes we make clause to nodes/2 succeed four times with answers

Node = 1, Node = 0, Node = 0, and Node = 0, so that two consecutive solutions

represent an edge. Solutions are then captured by findall/3 as a list that is passed

on to the R environment and the graph function.
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Fig. 4. Histogram of pagerank scores for Aleph predicates

We define the pagerank/1 procedure to find the maximum element of the graph

nodes in a file as computed by page.rank().

pagerank(File,nav(Name,Arity,Value)) :-

parse(File,Graph),

g <- graph(Graph),

r <- page..rank(g),

Scores <- r$vector,

max_element(Scores, Name, Arity, Value).

This predicate obtains the list of edges, and calls graph() to create a weighted graph

g, where the weight is the number of repeated occurrences. It then computes the page

rank scores into the R object r and reads the vector component of the object to list

Scores. The max element/3 procedure simply extracts the predicate with highest

pagerank.

Applying the program to ILP system Aleph generates a graph with 968 nodes and

7296 edges. The highest score in the graph is for !, which is unsurprising. If we remove

all built-in predicates the highest score is for $aleph global/2. We can also reverse

the graph. In this case the highest score is for reduce/0. Figure 4 shows a histogram

of pagerank scores for the predicates in Aleph.

4.4 Search and Visualisation

R and Prolog are complementary in that the former has strong presence in data ana-

lysis and visualisation while the latter has strengths in knowledge representation and

search based reasoning. In order to underline this and point at computational biology

and bioinformatics as important areas of applications, we employ r..eal as a bridge be-

tween a search algorithm implemented in Prolog and visualisation component via the

RCytoscape [17] Bioconductor package.

The objective is to build a network of interactions between genes that encode pro-

teins that are involved in cell motility. Direct edges, representing interactions within

this set of genes (the adhesome library), are extracted from the Kyoto Encyclopedia
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Fig. 5.KEGG interactions for a subset of the members of an adhesome library. Nodes are proteins

and edges denote interactions. Blue nodes are connecting proteins that do not appear in the library.

Edges are coloured as per type of interaction.

of Genes and Genomes (KEGG). We then employ a breadth first algorithm to join dis-

connected adhesome genes to the main network by finding one of the shortest paths

involving the minimum number of intermediary genes that are not in the library. The

results can then be displayed via the RCytoscape package which interfaces R to the

Cytoscape biological network visualiser.

Figure 5 shows the graph of the adhesome library as searched by Prolog and dis-

played by RCytoscape via calls to r..eal. This example utilises an in-house library that

uses R and its bridge to Cytoscape (RCytoscapse) to display arbitrary Prolog graphs (as

those managed with the ugraph library). We hope to publish this soon, inclusive of the

code for this example. The connection established with RCytoscape is bi-directional.

The user can use all facilities in Cytoscape, such as selecting nodes or edges. Lists

of such selections can be queried via r..eal which can be a starting point for further

analysis and search within Prolog. A more general discussion on Prolog and r..eal for

bioinformatics can be found in [3].

5 Conclusions

The library presented here achieves a tight integration of the R statistical software sys-

tem with two open source Prolog implementations. Our designing principles have been

those of simplicity and transparency across the systems. This has been accomplished by

(a) keeping to a minimum the transformations the user needs to be aware of, and by (b)

providing intuitive, mnemonic syntax to the inconsistencies between the two languages.

As a result, r..eal programs are clear and easy to follow. The functional inheritance of



R corresponds well with the logical underpinning of Prolog. R..eal provides a produc-

tive environment for building highly effective pipelines and interactive, query-based

data exploration.

Interfacing the R environmentwith Prolog widens the range of applications for logic

programming and inductive logic programming. It has the potential to facilitate the

development of systems combining logic and probabilistic reasoning and will signifi-

cantly improve the development of ILP applications requiring statistical and numerical

computations. We also hope that this interface will encourage logic programming re-

searchers to engage in areas of research where a synergy of knowledge representation

and statistical prowess is needed such as in bioinformatics and computational biology.

Symmetrically, our library increases the tools available to R researchers and program-

mers who wish to exploit Prolog’s advanced AI capabilities.

Possible extensions to the library include tighter integration with backtracking, al-

though this has not been a limitation to the current applications. One specific aspect of

such closer integration that might be of immediate value is the re-use of hidden vari-

ables (Section 3.3). An even tighter integration might be possible by allowing hidden

and other R variables to be available for garbage collection. Finally, it would be inter-

esting to investigate an even tighter syntactic integration by means of extensions to the

syntax admitted by Prolog.

R..eal was originally designed, developed and tested on YAP 6.3.1 under the Linux

operating system. It has also been compiled for, and known to be working onMS operat-

ing systems and Mac OS. It was later ported [19] to the SWI [21] engine via a complete

re-write of the C code. This has become the main development code as YAP provides a

comprehensive compatibility layer to SWI’s C interface [20]. The library and examples

presented here can be downloaded from our website (http://bioinformatics.

nki.nl/˜nicos/sware/r..eal/),
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