Syntactic integration of external languages in Prolog

Jan Wielemaker' and Nicos Angelopoulos?

1 Web and Media group, VU University Amsterdam,
De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands,
J.Wielemaker@vu.nl
2 Netherlands Cancer Institute,
Amsterdam,
The Netherlands,
n.angelopoulos@nki.nl

Abstract. Todays applications are typically programmed in multiple languages,
using SQL to access databases, JavaScript to make the (web-based) user inter-
face interactive, etc. Prolog can cooperate to this orchestra using two views: as a
logic server component or as ‘glue’. In this article we concentrate on the ‘glue’
view, which implies that we must be able to ‘talk’ the language of other com-
ponents. In one scenario, code snippets, such as SQL queries or HTML output,
are embedded as strings in the Prolog program. Using strings however is slow
and creates insecure programs that are hard to debug. Alternatively, one can use
Prolog terms to represent foreign ‘objects’. This latter approach has been in use
for a long while in the Prolog community. In this article, we give an overview of
the design choices that are available and discuss their consequences based on our
experience.

1 Introduction

A modern (Prolog) application often has to interact to the external world and this in-
teraction is increasingly based on the exchange of messages with other languages. The
oldest and most known example is SQL. To query a relational database we construct
the text for an SQL query from a skeleton and additional (parameter) information. This
SQL query is sent to the database and the result is translated into Prolog terms using,
for example, an ODBC wrapper. Other examples are (a) web-based applications gen-
erating HTML and Javascript, (b) generating graphical representations of a graph by
creating a description thereof in the dot language, using graphviz [3] to render this and
(c) interfacing to the R language for statistical operations.

In many languages such tasks are performed by creating strings, often concatenated
from smaller building blocks or using printf() like skeletons where details are filled
from runtime parameters. For example, we can use the C code below to create an SQL
query to find all persons that live in a given city.

sprintf (cmd, "SELECT » FROM Persons\n"
"WHERE City='%s’", city);

40

This approach is problematic. It is at the heart of what is commonly referred to
as SQL injection. Such an injection is established by exploiting syntax features
such as quoting rules of the target language. For example, we can use the value
"xxx’ OR City LIKE ’ " for city, getting results for all cities rather than just
a single city. Another disadvantage of this approach is that creating, but especially pars-
ing textual expressions is a costly process in terms of CPU usage. Both misinterpretation
and the CPU overhead can be avoided if the target language provides a structured alter-
native to the textual interface (e.g., a binding to the C language). Finally, using strings
that express messages in another language often leads to inelegant, hard to maintain
programs that do not take advantage of the flexibility of Prolog’s data representation.

Nevertheless, the text-based approach is popular for at least two reasons. First, it is
easy to understand, especially for novices and second, it is more immediate and straight-
forward to implement at the start. It is often the case that such integrations are born by
the necessity of specific projects, that want the job done in the minimum of time. There
is rarely an interest within specific projects to create general, easy to use and secure
interfaces.

Prolog is rather poor in embedding long strings (section 8), but it allows for creating
a shadow ‘DOM structure’3 naturally and concisely and this structure can elegantly
be serialized using DCGs or translated into a series of low-level calls to the API of
a target language. Using this approach, injection attempts are prevented by a correct
translation from the shadow DOM to the target language. Obviously, any OO language
also allows building a shadow DOM structure, but this requires a verbose mess of ‘new’
and constructors. Even popular server platforms such as Java Server Pages (JSP) do not
take this route.

The described examples have been published elsewhere. The contribution of this
article is that it provides an overview of what we consider the main design options and
it contains suggestions on how the Prolog syntax could be extended to accommodate a
wider range of languages.

In the remainder of this article, we will describe a number of examples and our
experience with these. In section 8 we summarise the relevant dimensions to consider
when developing a Prolog interface to an external language.

2 SQL

Connecting Prolog to relational databases using SQL is extensively studied. Many Pro-
log systems contain a low-level database interface that allows for executing an SQL
query represented as text and receive the results as a Prolog term, usually row-by-row
on backtracking. This interface makes the complete power of SQL available to Prolog,
together with the disadvantages of text-based interaction described in the introduction.
Some interfaces, e.g., SWI-Prolog’s odbc_prepare/5* allow for prepared statements.

3 The term ‘DOM structure’ is precise for HTML/XML documents. Here, we use it in a more
abstract sense. ‘AST’ (Abstract Syntax Tree) may be more appropriate for some of the target
languages.

4 http://www.swi-prolog.org/pldoc/man?predicate=odbc_prepare/5

41

Prepared statements are executed using their handle and parameters, avoiding SQL in-
jections.

Christophe Draxler [2] designed a still widely used high-level interface to access
relational databases. The core idea is to relate database tables to predicates. Next, a nor-
mal Prolog body-term created from these predicates and a subset of normal Prolog goals
is translated into an SQL query. The advantage of this is that the Prolog programmer
does not even have to know SQL to pose complex queries to the relational database.
The disadvantage is that not all SQL features can be expressed in this language, for
example it is not possible to create a new table through this interface. Also, Prolog’s
approach to access tuples by argument position is problematic for accessing tables with
many columns.

An alternative approach is NED [5], where the users use Prolog terms as an abstract
representation of a query, where the expressivity is tailored to fit context-specific re-
quirements. The disadvantage of this type of approach is that it introduces a complete
new language that needs to be documented and studied in detail, both for Prolog and
database experts.

3 HTML

HTML (or XML or SGML) is a markup language rather than a programming language,
i.e., it cannot be executed. HTML documents are a frequently used component in web-
based applications. Although HTML itself is not executed and therefore the security
consequences of invalid HTML may seem less severe than invalid SQL, HTML can
embed executable ‘script’ elements that does turn it into a security risc. L.e., embedding
uncontrolled text in HTML can inject code into the page that is executed by the browser.

One of the early implementations for processing HTML documents as Prolog terms
is Ciao’s PiLLow [4] library. SWI-Prolog’s HTML generation library [10] is related, but
exploits DCGs that allows the user to define components that can be reused in different
HTML pages.

Dealing with these markup languages using Prolog terms works well because
the underlying document model is a tree where each node is either plain text
or is a node with an element name (e.g., span, div, hl), a set of attributes
and an ordered list of child nodes. Although the concrete HTML syntax (e.g.,
Hello World cannot be turned into valid Pro-
log, the underlying datamodel can easily be expressed and the translation is so simple
that it can be remembered easily by the user.

There are two fundamentally different approaches here. One is to represent a docu-
ment as a Prolog term, e.g., e lement (span, [class=cl], ['Hello World’]) and the other
is to represent a document as a logic program, a set of clauses that represent the logical
structure of the document. Roger Price describes four variations of the latter approach
in [6]. This is a general tradeoff in representing data in Prolog, where terms are typically
more suitable for volatile datastructures used within computations and programs can be
considered a rule based representation of the world.

42

4 JavaScript and JSON

In addition to HTML, web applications often have to emit JavaScript. Larger and static
pieces of JavaScript should probably be written in a separate JavaScript source file
and be included using the HTML script element. Small code, such as code that ini-
tialises JavaScript objects based on the current document context, should be maintained
together with the (Prolog) code that generates the web page. This implies we need a
solution to embed JavaScript source code into Prolog.

If we could limit the JavaScript to calls with simple parameters, this is quite fea-
sible and comparable to the Java, R and XPCE interfaces described in later sections
of this article. Structured objects can be exchanged as JSON>. JSON is a simple seri-
alisation syntax for structured objects. Its syntax is valid Prolog, but using this syntax
has some drawbacks. All keys and string values are written using double quotes (e.g.,
"name":"Joe"), where atoms result in a much more compact representation. If we
change this, using atoms for keys and string values, JSON constants such as null and
true become ambiguous. JSON support is part of the SWI-Prolog HTTP library and
consist of two layers. First, we define a Prolog representation for a JSON objects using
the following rules:

— A JSON object is mapped to a term Json(NameValueList), where NameValueList
is a list of Name=Value. Name is an atom created from the JSON string.

— A JSON array is mapped to a Prolog list of JSON values.

— A JSON string is mapped to a Prolog atom.

— A JSON number is mapped to a Prolog number.

— The JSON constants true and false are mapped —like JPL, see section 6— to @(true)
and @(false).

— The JSON constant null is mapped to the Prolog term @ (null)

Here is a complete example in JSON and its corresponding Prolog term:

{ "name":"Demo term",

"created": {
"day":null,
"month":"December",
"year":2007

}I

"confirmed":true,

"members":[1,2, 3]

Shttp://www.json.org/

43

json ([name=’'Demo term’,
created=json([day = @null,
month=’'December’,
year=20071),
confirmed = @true,
members=[1, 2, 3]

1)

The predicates atom_json_term/3, json_read/3 and json_write/3 can be used to
(de)serialise Prolog JSON terms. The second layer allows for defining a mapping be-
tween JSON terms and more commonly used Prolog representations. For example, a
Prolog programmer would typically represent a point in a two-dimensional space using
a term point(5,10). The typical JSON representation is {"x":5, "y":10}, possi-
bly extended with a "type": "point" property. The json_convert library can
convert between these two representations based on a declaration like this:

:— Jjson_object
point (x:integer, y:integer).

JavaScript allows for lambda functions, and these are commonly used to customise
objects defined in reusable libraries. A common feature is to register event hooks as
lambda functions with more abstract classes. Lambda functions are specified in the full
C-style syntax of JavaScript, while at their role in the program commonly asks them
to be specified from Prolog where the details (constants) depend on the application
context.

Many aspects of this language are currently invalid in Prolog, in particular con-
sider functions without arguments (e.g., myfunction ()), The relation between
function head and body (function(x, y) {...}), array subscripts and the
(object).(method) notation. Even if such as mapping is feasible, we are unsure of its
value considering our experience with expressing imperative code using Prolog syn-
tax in section 5. Possibly the problem is less severe here because the JavaScript code
executes in another agent (typically a web browser).

An alternative approach suggested in private conversation by Maarten van den Dun-
gen is to use Prolog directly, using JScriptLoghttp://jlogic.sourceforge.
net/ to execute code in the JavaScript environment. This solves the syntax issues, but
the user must be aware that the other Prolog code executes on a different engine, seeing
a different set of predicates, including a different set of built-in features.

5 XPCE

Although not widely known we introduce XPCE, SWI-Prolog’s graphics subsystem,
as an example of a wider class of language interface challenges. XPCE ([9], reworked
version in [8]), is an object oriented system, that allows objects to be manipulated from
Prolog through four basic predicates:

44

new(-Reference, +Class(+Arg, ...))

send(+Reference, + Method(+Arg, ...))

get(+Reference, +Method(+Arg, ...), -Result)

free(+Reference)
In these predicates, Reference is a term @/1 that identifies an XPCE object and
Arg is a reference, number, atom, term Class(+Arg, ...) or new(Class). The latter
is needed to create an instance from a class without arguments because Class ()
is not valid syntax.

The above predicates allow for manipulating objects. XPCE can, similarly to
JavaScript, store executable code into object properties. Being designed for use with
Prolog, executable code is expressed as objects and thus can be manipulated from Pro-
log using the same interface. Code objects include conjunction, disjunction, negation,
arithmetic, higher order operations on collections, etc. Below is a simple example of
a button that colours a box when clicked. Note that the outer ‘message’ refers to a
property (method) of class button and the inner ‘message’ to a class name.

new (B, button(’Click for red box’)),
send (B, message (message (Box, colour, colour(red)))),

XPCE takes the integration one step further by supporting subclassing of XPCE classes
from Prolog. To do this, we use a Prolog syntax to describe a new subclass and its
methods. The method body can use the full power of Prolog, although it is executed as
once/l. A class definition is compiled into an XPCE class with proxy methods that call
the Prolog implementations of the methods.

XPCE is a special case because the language was designed for the way it is em-
bedded in Prolog. Notably, XPCE does not have a concrete syntax and can only be
‘programmed’ by managing objects using the four principal interaction functions.

XPCE/Prolog is a powerful framework for building applications, but it has a steep
learning curve. In part, this is unavoidable due to the sheer size of graphical libraries.
Other parts of the complexity are caused by the fact that you have two ways to store data:
the Prolog way and in XPCE objects. Each can be manipulated through a language. Both
languages are expressed in the same syntax, but their different semantics is confusing
to programmers.

6 Java (JPL)

JPL,° developed by Paul Singleton, uses an approach to access Java from Prolog that
is similar to XPCE.” Java is disclosed through the JNI interface, providing Prolog with
means to create Java data structures. Next, the interface uses the Java reflection API to

6 http://www.swi-prolog.org/packages/jpl/
7 In addition, JPL provides an interface to access Prolog from Java that is loosely based on the
SWI-Prolog C++ interface. We consider that irrelevant to the discussion in this article.

45

invoke methods on Java objects by name. This can be compared to the four principal
predicates of XPCE.

There are a large number of implementations that provide access to Java from Pro-
log. These use three ways to access Java: (1) JNI based, (2) network based (e.g., Inter-
Prolog®) or (3) Prolog (and its builtin predicates) are written in Java. The implementa-
tions we know use the Java reflection interface to access methods in Java.

Extending Java from Prolog by creating Java classes and methods is not provided by
JPL. In theory, the class-extension mechanism used with XPCE/Prolog can be imple-
mented by generating, compiling and loading Java code that implements the required
proxy classes. This would allow Prolog programmers to extend Java class libraries with-
out much knowledge of Java. Given that Java has a widely known syntax, it is doubtful
that many people would like to create Java classes using Prolog syntax. Creating Java
(proxy) classes from Prolog, where the methods are executed in Prolog may provide a
promising alternative for making Prolog available from Java.

7 R

The R language for statistical computing provides a rich computational framework,
a programming language with a functional flavour and library of primitives for graphics,
mostly diagrams. The r..eal [1] Prolog to R [7] interface went through two iterations.
The first realisation used R as a slave process with pure textual exchange of results. The
second generation interface, r..eal, uses, like JPL and XPCE, a native interface. The
system supports three basic interactions on the <— operator, as illustrated in the session
below:

1 ?- [library(real)].
true.

2 ?- a <- [1,2,3].
true.

3 ?2- <- a.

[11 1 2 3

true.

4 ?2— A <- a.

A =11, 2, 3].

The first line assigns a Prolog list as a vector to an R variable. The second prints the
result of an R expression and the last converts the result of an R expression into a
Prolog term. The interface describes a mapping between R and Prolog terms. Vectors
are mapped to flat lists, matrices to singly nested lists, R’s named list to Prolog pair
lists and function calls to term structures. Communication of large data structures is
facilitated via an efficient low level interface based on the C language interface of the
two systems. Calls to R functions result in translation of the Prolog term into a string
that is evaluated by R.

8http://www.declarativa.com/interprolog/

46

Unlike with JavaScript, mapping from Prolog terms to R expressions works well

due to the simple uniform functional syntax of R. The result is a powerful interface.
However, it suffers from several issues, some fundamental and some less so:

8

— While primitive Prolog data is converted through the R interface to C, arbitrary

terms are processed as text. This results in very different performance results.
Consider the code below. In the first call we convert a Prolog list to an R array
(no text involved) and in the second, we create a complete textual representation
("mean (c(1,2...,100000))™)

1 ?- numlist(1,100000,L), time((a<-L, M<-mean(a))) .
60 inferences, 0.006 CPU

(1, 2, 3, 4, 5, 6, 7, 8, 91...1,

= 50000.5.

=< B ooe
|

N

?-— numlist (1,100000,L), time((M<-mean (L))).
2,088,940 inferences, 1.129 CPU

(1, 2, 3, 4, 5, 6, 7, 8, 9l...1,
M = 50000.5.

o

=

R variables are global and can be destructively assigned to. While this provides the
-often wanted- global variables to the Prolog/R infrastructure, it can be confusing
the Prolog programmers.

The syntax mapping requires some tweaks to avoid ambiguity. These include the
use of dot character in names and the empty argument list notation. The inter-
face circumvents these by adding a ‘.’ in both cases. Thus var.name becomes
var..name and foo () translates to foo (.). The integration would be en-
hanced if the original code can be handled from within Prolog. Another difficulty
arises from the syntax commonly used in many languages for accessing arrays.
a[i, j] isinvalid in Prolog. R..eal uses a caret operator to legalise the syntax, for

9 _ A 99

example ”a” [1, 317,

Criteria for designing an interface

Above, we discussed several examples that make external languages accessible from
Prolog. Although we cannot claim that the presented solutions are the best possible, all
these systems have gone through multiple iterations to reach at their current design.

All the described interfaces represent ‘objects’ of the target language using Prolog

terms. In part, this may be influenced by Prolog’s poor abilities to represent text, which
is limited by the following:

— Lack of a long string (as, for example, Python’s """ . .. """ syntax). This makes

it hard embed strings that require quotes in a Prolog text. Note that the ISO Prolog
standard allows both for doubling quotes to escape them and the backslash notation,
which complicates the introduction of long strings.

— Complicated multi-line string syntax. Line-breaks need to be escaped with a back-

slash and the next line must start at the left margin to avoid additional white-space
in the output.

47

— No simple concatenation syntax, neither between constant string fragments nor
with number and other constructs.

— Representing text as atoms is limited by atom-length in many implementations.
Representing text as strings wastes space on most implementations.

8.1 Choosing a Prolog syntax for the target language
We distinguish several options for representing the target language in Prolog:

— If the target language is (almost) valid Prolog syntax, using Prolog syntax that is
either equivalent to the target language or introduces only small easy to under-
stand systematic transformations, is an attractive option. This approach is easy to
learn and does not require extensive documentation. The r..eal interface described
in section 7 is an example. Additional operator declarations can help bridging the
gap. Commonly encountered problematic syntax features are the empty parame-
ter list, represented as “ () ”, array subscripts (e.g., a [1]), uppercase identifiers,
distinguishing quoted strings from symbols (JSON) and the dot (.) being used in
identifiers or to separate methods from objects.

— In some cases, the syntax is complicated, but the datamodel is simple and can easily
be represented in Prolog. The discussed markup languages (section 3) form a good
example.

— In some cases, we can represent a fair deal of the intended semantics using our
familiar Prolog language and compile Prolog to the target language. This is the case
for the SQL interface by Christophe Draxler [2] (see section 2). His SQL mapping
results in a uniform syntax and semantics at the price of not being able to access all
functionality of the target language. For example, it is not possible to create a new
table through this interface.

Fortunately, many special purpose languages can be handled by one or more of the
above options. An exception is JavaScript, which has a complicated C-like syntax. In-
venting a Prolog datastructure that captures all functionality of the language and is easy
to understand by a Prolog programmer with some JavaScript knowledge is probably not
feasible.

8.2 How does the semantics of target language relate to Prolog?

Relation between the semantics of both systems is also important. We see that a close
semantic relation (SQL) can be used to find an alternative to a syntactic mapping. We
also see that strong syntactic integration between two systems that have large semantic
differences (R, XPCE) can lead to confusion.

8.3 Technical integration

In many of the above described examples (SQL, HTML, JavaScript), we must ulti-
mately produce a string serialisation for the target language. In others (XPCE, Java, R)
generation of text can be avoided. In other words, the target language can be linked into
the same process and the systems can communicate using low-level communication that
typically uses the C language as intermediate.

48

9 Discussion

Many of today’s applications are built from components that use different program-
ming languages and markup languages. There are roughly two ways in which we can
make Prolog play in this orchestra: (1) as a logic component or (2) as ‘glue’, making
Prolog talk to multiple different components. Some systems (e.g., Amzi!) concentrate
explicitly on a minimal role as ‘Logic Server’. Most system make no clear choice and
SWI-Prolog probably represents the most extreme view in pushing Prolog as a ‘glue’
language.

Composing text of another language using simple string manipulation is often unde-
sirable because the actual goal is to create structured objects in the target environment
(let it be data structures or executable objects). Simple composition of text fragments
easily leads to syntax errors that are hard to detect in the development environment or,
worse, security vulnerabilities (e.g., SQL injections).

As we have seen, Prolog is rather poor in representing (long) textual expressions, but
it is good in using concise syntax to build complex datastructures of which the syntax
can be optimised using operators. This approach works for languages with a uniform
syntax that is easily expressed (R), languages with a simple datamodel (HTML) or
languages that are semantically close, such that we can translate a subset of pure Prolog
into the target language (SQL).

Avoiding limits in Prolog supports this approach, i.e., unbounded integers can com-
fortably represent integers from any language. Compound terms with unrestricted arity
allows representing any table row or array as a compound term and atoms with unlim-
ited length and Unicode characters can represent any string. These features can all be
implemented within the ISO standard.

It is feasible to extend Prolog syntax to improve the transparency of these language
mappings, avoiding the need for workarounds such as discussed in section 7. In partic-
ular, we lack the commonly found syntactic constructs described below. If we can find
an elegant way to add these constructs, more languages can be handled using a syntax
that stays close to the syntax of the target language, improving readability and reducing
the need to document unnatural changes to the syntax of the target language.

name()
This is currently a syntax error in Prolog. Adding it introduces some ambiguities in
e.g., functor/3. Otherwise, atom/1 can fail on this and compound/1 can succeed.

a[x]
Array syntax This is already supported by e.g., B-Prolog.’ In B-Prolog,
X[I1l,...,In] isashorthandforx~[I1,...,In].

name(arg...) { body }
It is unclear how to turn this into valid syntax, but currently it is always a syn-
tax error because neither a compound term, nor a {...} term can be an operator
and the Prolog syntax does not allow for a sequence of two non-operator terms.
This implies that it is possible to make this term legal syntax without introducing
compatibility issues with the current Prolog standard and, like the array subscript
notation discussed above, map it to a Prolog term.

o http://www.probp.com/manual/noded47.html

49

a.b

"-separated sequences These can in part be supported by defining ’.” as an infix
operator, but this creates ambiguous syntax with floating point numbers. Handling
the dot as an operator causes such identifiers to show up as lists, which may easily
lead to ambiguities. Possibly, a.b can be handled at the tokenization level. For
example, it could be a valid unquoted atom.

Acknowledgements

This paper is a reflection based on a long experience with connecting Prolog with other
languages. The described interfaces where developed in several iterations with exten-
sive feedback from early users. We particularly would like to than Anjo Anjewierden for
this pioneering work on XPCE and Paul Singleton for his work on JPL and comments
on a draft of this article.

References

10.

. Nicos Angelopoulos, Vitor Santos Costa, Jan Wielemaker, Joao Azevedo, Rui Camacho, and

Lodewyk Wessels. R..eal: A library for statistical Al. Technical report, Netherlands Cancer
Institute, 2012.

. Christoph Draxler. Accessing relational and higher databases through database set predicates

in logic programming languages. Phd thesis, Zurich University, 1991.

. John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, and Gordon Woodhull.

Graphviz open source graph drawing tools. In Petra Mutzel, Michael Jnger, and Sebastian
Leipert, editors, Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages
594-597. Springer Berlin / Heidelberg, 2002. 10.1007/3-540-45848-4_57.

. Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed WWW programming using

(ciao-)prolog and the piLLoW library. TPLP, 1(3):251-282, 2001.

. Frederick Maier, Donald Nute, Walter D. Potter, Jin Wang, Mayukh Dass, Hajime Uchiyama,

Mark J. Twery, Peter Knopp, Scott Thomasma, and H. Michael Rauscher. Efficient integra-
tion of prolog and relational databases in the ned intelligent information system. In Hamid R.
Arabnia, editor, /IKE, pages 364-369. CSREA Press, 2003.

. Roger Price. No more me too - different approaches to logic documents. In Proceedings of

2nd International Workshop on Logic Programming Tools for Internet Applications, 1997.

. R Development Core Team. R: A Language and Environment for Statistical Computing. R

Found. for Stat. Comp., Vienna, Austria, 2012.

. Jan Wielemaker. Logic programming for knowledge-intensive interactive applications. PhD

thesis, University of Amsterdam, 2009. http://dare.uva.nl/en/record/300739.

. Jan Wielemaker and Anjo Anjewierden. An architecture for making object-oriented systems

available from prolog. In WLPE, pages 97-110, 2002.
Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. Swi-prolog and the web.
Theory and Practice of Logic Programming, 8(3):363-392, 2008.

50

