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structure

Structure of the talk

motivation
(pathways, learning, relational,
probabilistic)

Stochastic Logic Programs

parameter estimation with FAM

experiments with chain probabilistic
pathway

experiments with branching probabilistic
pathway Wye – p.2



pathways

Metabolic pathways

represent biochemical reactions in the cell of
organisms

are publicly available in databases such as
KEGG

are cross-referenced with other data, such as
gene sequences

there are relationships across species due to
evolution
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aromatic amino acid
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machine learning

Public databases are, almost by definition, incomplete
and containing incorrect information.
Amongst other reasons incompleteness is due to:

unknown enzymes

lack of interest/resources for documenting
secondary pathways

Machine learning can use observational data to

revise

augment

verify

metabolic pathway descriptions. Of particular interest is
the use of cross-species information.

Wye – p.5



relational

Relational representations can express background
knowledge at various levels of biological detail. The ability
to incorporate existing knowledge enhances ability to
learn.
For instance in metabolic pathways, additional knowledge
might include

physical properties of substrates and
products for individual reactions

the existence of required co-factors and
absence of blocking inhibitors

the availability of similar pathway in other
cells Wye – p.6



probabilistic

Various forms of uncertainty arise when modelling
biological systems.
Two main sources are:

competing biological processes

lack of detail in the model

We consider two scenarios of extending metabolic
pathways in these directions.

Wye – p.7



rates as probabilities

A) 1.1.1.25 B) 2.7.1.71

p p
A B

C00493

Pathways do not take into account the rates with which
enzymes consume their substrates to produce
metabolites. In the case of alternative production paths for
a single metabolite it is impossible to distinguish the
contribution of each path.

One way to model the difference in rates is by way of
probabilities which captures the rates as proportions.

Wye – p.8



rates for probabilistic ML

A) 1.1.1.25 B) 2.7.1.71

p p
A B

C00493

Rate constants can be used in conjuction with
Michaelis-Menten equation to derive this probabilities.
However databases such as Brenda record very few rate
constants.

ML techniques can be used to extrapolate these from
experimental data.
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lack of detail as probabilities

: p1.1.1.25

C00005 C02652

C00006 C00493

Due to a number of factors, such as physical chemistry,
temperature, intracellular distance etc., reactions may not
happen even if substrates are present.

Lack of detail in the model can then be modelled as
probability on the event of the reaction happening.
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rest of talk

modelling lack-of-detail in SLPs

parameter estimation with FAM

experiments with chain probabilistic
pathway

experiments with branching probabilistic
pathway

conclusions

Wye – p.11



SLPs

A stochastic logic program, is a parameterised logic
program. Each clause, of a probabilistic predicate, has
attached to it a parameter (or label).

Example program

1/2 :: nat( 0 ).
1/2 :: nat( s(X) ) :- nat( X ).

It is normalised if the sum of the parameters for the
clauses of each probabilistic predicate is equal to 1.

An SLP is pure if all its predicates are parametrised.
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FAM, Cussens (2001)

Parameter estimation: estimate tuple of parameters
λ = (λ1, λ2, . . . , λm) when given frequency of n
observations y = (y1 −N1, y2 −N2, . . . , yn −Nn) which are
assumed to have been generated from S according to
unknown distribution p(λ,S,G).

Failure Adjusted Maximisation is an EM algorithm, where
adjustment is expressed in terms of failure observations.
The expected frequency of a clause is:

ψλ[νi | y] =

T
∑

k=1

Nkψλ[νi | yk] +N(Z−1
λ − 1)ψλ[νi | fail] (1)
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fam algorithm

1. Set h = 0 and λ(0) to some estimates such that
Zλ(0) > 0

2. For parameterised clause Ci compute ψλ(h)[νi | y]

using (Eq. 1).

3. Let S(h)
i be the sum of ψλ(h)[νi′ | y] for all Ci′ of the

same predicate as Ci.

4. If S(h)
i = 0 then l(h+1)

i = l
(h)
i otherwise

l
(h1)
i =

ψλ(h)[νi | y]

Si(h)

5. Increment h and go to 2 unless λ(h+1) has converged.Wye – p.14



implementation

SLP clauses are transformed so that,

identification is added to each clause

probability of a derivation is returned

the path of a derivation as a list of ids, is returned

would-be failures simply set a flag and succeed

curtail infinite or very long computations, by
approximating their probability to zero
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FAM on singular SLPs

Although FAM has been introduced for pure SLPs we
applied it to a slightly more general class. Singular SLPs
allow for impure/mixed SLPs in as far as that all
derivations of a specific goal map to distinct stochastic
path.

A stochastic path is a sequence of the used probabilistic
clauses.
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probabilistic pathways

1.1.1.25

C00005 C02652

C00006 C00493

(a)

: p1.1.1.25

C00005 C02652

C00006 C00493

(b)

enzyme( ’1.1.1.25’, rea_1_1_1_25, [c00005,c02652], [c00006,c00493] ).

0.80 :: rea_1_1_1_25( yes, yes, yes, yes ).
0.20 :: rea_1_1_1_25( yes, yes, no, no ).

(c)

Semantics of the attached probability are :
“Given the inputs are present, the reaction will happen
with probability p.”

Probability is attached to the reaction not to the enzyme.
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assumptions

We have made two major simplifying assumptions

reactions deplete their inputs

each reaction is only considered, at most,
once
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simulation

We run simulated experiments in order to

obtain estimates on required learning
data-size

observe behaviour of FAM
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PE scenario

Our experiments observe the following pattern :

an SLP with n true parameters
λ = 〈λ1, λ2, . . . , λn〉 is used to sample T
samples

sampling goal is
can_produce(+Substrates,−Metabolites)

parameters replaced by uniformly
distributed ones

use FAM to obtain λ̄ = 〈λ̄1, λ̄2, . . . , λ̄n〉
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chain pathway

We have added direction and mock probabilities to the
aromatic amino acid pathway and run the following two
sets of experiments.

x t It
x Slt

x Sut

x Sit

x

a 1 10 100 1000 100
2 20 110 1010 100

b 1 5 100 3300 400
2 10 110 3310 400
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measures

FAM to observe two values

accuracy, root mean square for parameters

Rti

x =

√

√

√

√

(

∑N
j=1(pj − p̄(x,t,i,j))

2

n

)

and taking mean and sdv over t

raw execution times for runtimes
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chain plots
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branching

To compare the effect of secondary paths we, artificially,
extended the pathway with an alternative path of length
five, near the top of the graph.

The secondary path only fires when there is a failure in the

primary path.
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artificial pathway

X

4.2.1.10

2.7.1.71 2.5.1.19

4.6.1.4

4.2.1.51

2.6.1.7 2.6.1.7

5.3.1.24

4.1.1.48

4.1.3.27

4.2.1.20

C00009

C00002

2.4.2.185.4.99.5

C00065

4.2.1.20

C00065

4.2.1.20

C00119

C00009

C00005

C00025

C00026C00025

C00108

C00014

C00009

C00009

C00074

C00008

C00002

C00064

C00631

4.2.1.11 4.2.1.11

C00279

C03356

C00074

4.1.2.15

C04691

4.6.1.3

C00944

C02652

C02637

C03175

C01179

C00082

C00166

C00108

C01302

C03506

C00078

C04302

C01269

C00006

C00008

C00074

C00025

C00022

C00254

C00251

C00014 or C00064

C00661

C00661

C00463

C00079

C00026

C00025

C00006

C00005

C00009

C00009

1.1.1.25

C00013

1.3.1.13

2.7.1.71

2.5.1.19

4.6.1.4

4.1.3.27

2.7.1.40

C00008

C00022

C00022

C00251

C01269

C03175

C00493

Wye – p.25



comparative plots
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FAM future work

Improve efficiency by :

storing expressions (
∑

r ψλ(r)νi(r)) rather
than
(re-)doing the proofs at each iteration.

simplification of such expressions (and
their equivalence to graph reduction).

Extend algorithm to cover impure SLPs.
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bottom line

Currently we have run FAM to get initial estimates on the
data size required for learning actual parameters.

Machine learning tasks on probabilistic pathways :

pathway completion

pathway verification

reaction rate estimation (different
representation)

Wye – p.28
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