
Deep Probabilistic Logic Programming

Arnaud Nguembang Fadja Evelina Lamma Fabrizio Riguzzi

Dipartimento di Ingegneria – University of Ferrara

Dipartimento di Matematica e Informatica – University of Ferrara
[arnaud.nguembangfadja,evelina.lamma,fabrizio.riguzzi]@unife.it

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 1 / 31



Introduction

• Probabilistic logic programming is a powerful tool for reasoning with
uncertain relational models

• Learning probabilistic logic programs is expensive due to the high cost
of inference.

• We consider a restriction of the language of Logic Programs with
Annotated Disjunctions called hierarchical PLP in which clauses and
predicates are hierarchically organized.

• Hierarchical PLP is truth-functional and equivalent to the product
fuzzy logic.

• Inference then is much cheaper as a simple dynamic programming
algorithm similar to PRISM is sufficient

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 2 / 31



Probabilistic Logic Programming

• Distribution Semantics [Sato ICLP95]

• A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or simply
worlds)

• The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

• The probability of a query is obtained from this distribution

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 3 / 31



PLP under the Distribution Semantics

• A PLP language under the distribution semantics with a general
syntax is Logic Programs with Annotated Disjunctions (LPADs)

• Heads of clauses are disjunctions in which each atom is annotated
with a probability.

• LPAD T with n clauses: T = {C1, . . . ,Cn}.
• Each clause Ci takes the form:

hi1 : πi1; . . . ; hivi : πivi :− bi1, . . . , biui

,

• Each grounding Ciθj of a clause Ci corresponds to a random variable
Xij with values {1, . . . , vi}

• The random variables Xij are independent of each other.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 4 / 31



Example

• UW-CSE domain:

advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C ,A), project(C ,B).

advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C ,A), taughtby(C ,B).

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 5 / 31



Distribution Semantics

• Case of no function symbols: finite Herbrand universe, finite set of
groundings of each clause

• Atomic choice: selection of the k-th atom for grounding Ciθj of
clause Ci

• Represented with the triple (Ci , θj , k)

• Example C1 = advisedby(A,B) :
0.3 :− student(A), professor(B), project(C ,A), project(C ,B).,
(C1, {A/bob,B/harry ,C/p1}, 1)

• Composite choice κ: consistent set of atomic choices

• The probability of composite choice κ is

P(κ) =
∏

(Ci ,θj ,k)∈κ

πik

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 6 / 31



Distribution Semantics

• Selection σ: a total composite choice (one atomic choice for every
grounding of each clause)

• A selection σ identifies a logic program wσ called world

• The probability of wσ is P(wσ) = P(σ) =
∏

(Ci ,θj ,k)∈σ πik

• Finite set of worlds: WT = {w1, . . . ,wm}
• P(w) distribution over worlds:

∑
w∈WT

P(w) = 1

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 7 / 31



Distribution Semantics

• Ground query q

• We consider only sound LPADs, where each possible world has a total
well-founded model, so w |= q means that the query q is true in the
well-founded model of the program w .

• P(q|w) = 1 if q is true in w and 0 otherwise

• P(q) =
∑

w P(q,w) =
∑

w P(q|w)P(w) =
∑

w |=q P(w)

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 8 / 31



Example

• UW-CSE domain: the objective is to predict the “advised by” relation
between students and professors.

advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C ,A), project(C ,B).

advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C ,A), taughtby(C ,B).

• q = advisedby(harry , ben) where harry is a student, ben is a
professor, they have one joint project and ben teaches one course
where harry is a TA. So

P(advisedby(harry , ben)) = 0.3 · 0.6 + 0.3 · 0.4 + 0.7 · 0.6 = 0.72

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 9 / 31



Hierarchical PLP

• We want to compute the probability of atoms for a predicate r : r(t),
where t is a vector of constants.

• r(t) can be an example in a learning problem and r a target predicate.

• A specific form of an LPADs defining r in terms of the input
predicates.

• The program defined r using a number of input and hidden predicates
disjoint from input and target predicates.

• Each rule in the program has a single head atom annotated with a
probability.

• The program is hierarchically defined so that it can be divided into
layers.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 10 / 31



Hierarchical PLP

• Each layer contains a set of hidden predicates that are defined in
terms of predicates of the layer immediately below or in terms of
input predicates.

• Extreme form of program stratification: stronger than acyclicity [Apt
NGC91] because it is imposed on the predicate dependency graph, and
is also stronger than stratification [Chandra, Harel JLP85] that allows
clauses with positive literals built on predicates in the same layer.

• It prevents inductive definitions and recursion in general, thus making
the language not Turing-complete.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 11 / 31



Hierarchical PLP

• Generic clause C :

C = p(X ) : π :− φ(X ,Y ), b1(X ,Y ), . . . , bm(X ,Y )

where φ(X ,Y ) is a conjunction of literals for the input predicates
using variables X ,Y .

• bi (X ,Y ) for i = 1, . . . ,m is a literal built on a hidden predicate.

• Y is a possibly empty vector of variables existentially quantified with
scope the body.

• Literals for hidden predicates must use the whole set of variables
X ,Y .

• The predicate of each bi (X ,Y ) does not appear elsewhere in the
body of C or in the body of any other clause.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 12 / 31



Hierarchical PLP

• A generic program defining r is thus:

C1 = r(X ) : π1 :− φ1, b11, . . . , b1m1

. . .

Cn = r(X ) : πn :− φn, bn1, . . . , bnmn

C111 = r11(X ) : π111 :− φ111, b1111, . . . , b111m111

. . .

C11n11 = r11(X ) : π11n11 :− φ11n11 , b11n111, . . . , b11n11m11n11

. . .

Cn11 = rn1(X ) : πn11 :− φn11, bn111, . . . , bn11mn11

. . .

Cn1nn1 = rn1(X ) : πn1nn1 :− φn1nn1 , bn1nn11, . . . , bn1nn1mn1nn1

. . .

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 13 / 31



Example

C1 = advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C ,A), project(C ,B),
r11(A,B,C ).

C2 = advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C ,A), taughtby(C ,B).

C111 = r11(A,B,C ) : 0.2 :−
publication(D,A,C ), publication(D,B,C ).

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 14 / 31



Program Tree

r

C1

b11

C111 . . . C11n11

. . . b1m1

C1m11
. . . C1m1n1m1

. . . Cn

bn1

Cn11 . . . Cn1nn1

. . . bnmn

Cnmn1
. . . Cnmnnnmn

. . .

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 15 / 31



Example

C1 = advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C ,A), project(C ,B),
r11(A,B,C).

C2 = advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C ,A), taughtby(C ,B).

C111 = r11(A,B,C) : 0.2 :−
publication(D,A,C), publication(D,B,C).

advisedby(A, B)

C1

r11(A, B, C)

C111

C2

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 16 / 31



Hierarchical PLP

• Writing programs in hierarchical PLP may be unintuitive for humans
because of the need of satisfying the constraints and because the
hidden predicates may not have a clear meaning.

• The structure of the program should be learned by means of a
specialized algorithm

• Hidden predicates generated by a form of predicate invention.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 17 / 31



Inference

• Generate the grounding.

• Each ground probabilistic clause is associated with a random variable
whose probability of being true is given by the parameter of the clause
and that is independent of all the other clause random variables.

• Ground clause Cpi = ap : πpi :− bpi1, . . . , bpimp . where p is a path in
the program tree

• P(bpi1, . . . , bpimp ) =
∏mp

i=k P(bpik) and P(bpik) = 1− P(apik) if
bpik = ¬apik .

• If a is a literal for an input predicate, then P(a) = 1 if a belongs to
the example interpretation and P(a) = 0 otherwise.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 18 / 31



Inference

• Hidden predicates: to compute P(ap) we need to take into account
the contribution of every ground clause for the predicate of ap.

• Suppose these clauses are {Cp1, . . . ,Cpop}.
• If we have two clauses,
P(api ) = 1− (1− πp1 · P(body(Cp1)) · (1− πp2 · P(body(Cp2)))

• p ⊕ q , 1− (1− p) · (1− q).

• This operator is commutative and associative:⊕
i

pi = 1−
∏
i

(1− pi )

• The operators × and ⊕ are respectively the t-norm and t-conorm of
the product fuzzy logic [Hajek 98]: product t-norm and probabilistic
sum.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 19 / 31



Inference

• If the probabilistic program is ground, the probability of the example
atom can be computed with the arithmetic circuit:

⊕

×

⊕

×

π111

. . . ×

π11n11

p11
. . . ⊕

×

π1m11

. . . ×

π1m1n1m1

p1m1

π1

q1
. . . ×

⊕

×

πn11

. . . ×

πn1nn1

pn1
. . . ⊕

×

πnmn1

. . . ×

πnmnnnmn

pnmn

πn

qn

p

. . .

• The arithmetic circuit can be interpreted as a deep neural network
where nodes have the activation functions × and ⊕

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 20 / 31



Example

G1 = advisedby(harry , ben) : 0.3 :−
student(harry), professor(ben), project(pr1, harry),
project(pr1, ben), r11(harry , ben, pr1).

G2 = advisedby(harry , ben) : 0.3 :−
student(harry), professor(ben), project(pr2, harry),
project(pr2, ben), r11(harry , ben, pr2).

G3 = advisedby(harry , ben) : 0.6 :−
student(harry), professor(ben), ta(c1, harry), taughtby(c1, ben).

G4 = advisedby(harry , ben) : 0.6 :−
student(harry), professor(ben), ta(c2, harry), taughtby(c2, ben).

G111 = r11(harry , ben, pr1) : 0.2 :−
publication(p1, harry , pr1), publication(p1, ben, pr1).

G112 = r11(harry , ben, pr1) : 0.2 :−
publication(p2, harry , pr1), publication(p2, ben, pr1).

G211 = r11(harry , ben, pr2) : 0.2 :−
publication(p3, harry , pr2), publication(p3, ben, pr2).

G212 = r11(harry , ben, pr2) : 0.2 :−
publication(p4, harry , pr2), publication(p4, ben, pr2).

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 21 / 31



Example

adivsedby(harry, ben)

G1

r11(harry, ben, pr1)

G111 G112

G2

r11(harry, ben, pr2)

G211 G212

G2 G3

⊕

×

⊕

1

0.2

1

0.2

0.36

0.3

0.36 ×

⊕

1

0.2

1

0.2

0.36

0.3

0.36
×

1

0.6

1
×

1

0.6

1

0.873

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 22 / 31



Building the Network

• The network can be built by performing inference using tabling and
answer subsumption

• PITA(IND,IND) [Riguzzi CJ14] is a program transformation that adds
an extra argument to each subgoal of the program and of the query
to store the probability of answers to the subgoal

• When a subgoal returns, the extra argument will be instantiated to
the probability of the ground atom that corresponds to the subgoal
without the extra argument.

• In programs of hierarchical PLP, when a subgoal returns the original
arguments are guaranteed to be instantiated.

• PITA(IND,IND) adds literals to bodies that combine the extra
arguments of the subgoals

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 23 / 31



Building the Network

• The contributions of multiple groundings of multiple clauses are
combined by means of tabling with answer subsumption.

• Tabling: keep a store of the subgoals encountered in a derivation
together with answers to these subgoals.

• If one of the subgoals is encountered again, its answers are retrieved
from the store rather than recomputing them.

• Tabling reduces computation time and ensures termination for a large
class of programs [Swift TPLP12].

• Answer subsumption [Swift TPLP12] is a tabling feature that, when a
new answer for a tabled subgoal is found, combines old answers with
the new one.

• In PITA(IND, IND) the combination operator is probabilistic sum.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 24 / 31



Parameter Learning

• Parameter learning by EM or backpropagation.

• Inference has to be performed repeatedly on the same program with
different values of the parameters.

• PITA(IND,IND) can build a representation of the arithmetic circuit,
instead of just computing the probability.

• Extra argument used to store a term representing the circuit

• Implementing EM would adapt the algorithm of [Bellodi and Riguzz
IDA13] for hierarchical PLP.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 25 / 31



Related Work

• [Sourek et al NIPS15]: build deep neural networks using a template
expressed as a set of weighted rules.

• Nodes for ground atoms and ground rules

• Values of ground rule nodes aggregated to compute the value of atom
nodes.

• AggregatIon in two steps, first the contributions of different
groundings of the same rule sharing the same head and then the
contributions of groundings for different rules.

• Proposal parametric in the activation functions of ground rule nodes.

• Example: two families of activation functions that are inspired by
Lukasiewicz fuzzy logic.

• We build a neural network whose output is the probability of the
example according to the distribution semantics.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 26 / 31



Related Work

• Edward [Tran et al. ICLR17]: Turing-complete probabilistic
programming language

• Programs in Edward define computational graphs and inference is
performed by stochastic graph optimization using TensorFlow.

• Hierarchical PLP is not Turing-complete as Edward but ensures fast
inference by circuit evaluation.

• Being based on logic it handles well domains with multiple entities
connected by relationships.

• Similarly to Edward, hierarchical PLP can be compiled to TensorFlow

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 27 / 31



Related Work

• Probabilistic Soft Logic (PSL) [Bach et al. arXiv15]: Markov Logic
with atom random variables taking continuous values in [0, 1] and
logic formulas interpreted using Lukasiewicz fuzzy logic.

• PSL defines a joint probability distribution over fuzzy variables, while
the random variables in hierarchical PLP are still Boolean and the
fuzzy values are the probabilities that are combined with the product
fuzzy logic.

• The main inference problem in PSL is MAP rather than MARG as in
hierarchical PLP.

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 28 / 31



Related Work

• Sum-product networks [Poon, Domingos UAI11]: hierarchical PLP
circuits can be seen as sum-product networks where children of sum
nodes are not mutually exclusive but independent and each product
node has a leaf child that is associated to a hidden random variable.

• Sum-product networks represent a distribution over input data while
programs in hierarchical PLP describe only a distribution over the
truth values of the query.

• Inference in hierarchical PLP is in a way “lifted”: the probability of
the ground atoms can be computed knowing only the sizes of the
populations of individuals that can instantiate the existentially
quantified variables

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 29 / 31



Conclusions and Future Work

• Conclusions
• hierarchical PLP: a restriction of the language of LPADs that allows to

perform inference quickly using a simple and cheap dynamic
programming algorithm such as PITA(IND,IND).

• Programs can be seen as arithmetic circuits/neural networks
• Parameters can be trained by gradient descent or EM

• Future work
• Develop backpropagation and EM formulas
• Perform also structure learning

Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 30 / 31



Fadja, Lamma and Riguzzi (UNIFE) Hierarchical PLP 31 / 31


