
Differentiable SAT/ASP
MATTHIAS NICKLES

SCHOOL OF ENGINEERING & INFORMATICS

NATIONAL UNIVERSITY OF IRELAND, GALWAY

Overview
• Introduction

• SAT and Answer Set Programming

• Approach outline

• Cost functions and parameter atoms for PLP

• Native algorithm

• Propagator-based approach

• Mapping to conventional Answer Set optimization

• Preliminary results

• Conclusion

Introduction (1)
• Modern SAT and ASP solvers are mature and fast inference tools

• Geared towards complex search, combinatorial and optimization problems
 (ASP & SAT)

• Strong foothold in industry (SAT)

• Rich, Prolog-like syntax but fully declarative (ASP)

• Non-monotonic reasoning (ASP)

• Similar solving techniques, ASP solving ≈ SAT solving + loop handling

• Closely related to Satisfiability Modulo Theories (SMT) and Constraint
 Programming

• First-Order logic syntax, action logics, event calculus, … can be translated to ASP

Introduction (2)
• ASP/SAT solving is a multi-model approach to inference

• Solving can produce some or all models as witnesses (if input is satisfiable)

• Stable models (a.k.a. answer sets) or satisfying Boolean assignments (SAT)

• Multiple alternative models as a natural way to express non-determinism

• Models as a natural way to represent possible worlds (as for PLP)

Introduction (3)
• How can we utilize SAT/ASP solving to compute not just models but
 also probability distributions over models?

• We could then use these distributions directly for probabilistic inference tasks

• Idea: distribution finding as a multi-model optimization task, using a suitable
 cost function over multiple models

• Generalized to (in principle) arbitrary differentiable multi-model cost functions

• Various solving techniques, outlined in this talk (further methods certainly exist)

• Focus on gradient-based approaches

• Also, we use sampling, for higher efficiency: a sample (a multi-set of models in our case)
 represents an approximate solution of the cost function

Input logic language
• SAT: we assume DIMACS-CNF input (set of clauses)

• ASP: Ground Answer Set program consisting of a finite set of normal rules:
 a :- b1, …, bk, not bk+1,…, not bm.

• Example for an Answer Set program (before grounding, i.e., instantiating X=dilbert):

 man(dilbert).

 single(X) :- man(X), not husband(X).

 husband(X) :- man(X), not single(X).

 This program has two so-called stable models ("answer sets") – the possible worlds:

 Sm1 = { man(dilbert), single(dilbert) }
 Sm2 = { man(dilbert), husband(dilbert) }

Approach outline (1)
• Besides CNF-clauses or an Answer Set program, we require

• a user-specified cost function

• a user-specified set of parameter atoms

• Parameter atoms: subset of all atoms/variables which serve as random variables

• Parameter atoms carry frequencies: normalized atom counts within the sample

• Cost function: arbitrary differentiable function parameterized with a vector
 of parameter atom frequencies

• Idea: incrementally add models to sample until cost function value ≤ threshold

• If process guided by (partial) derivatives of the cost function wrt. parameter atoms:
 Differentiable SAT/ASP

Approach outline (2)
• Each time we decide about which parameter atom to add to partial assignment
 (the current incomplete model “under construction”):
 compute how this decision would influence the overall cost function

 => partial derivatives of cost function wrt. parameter atoms (as variables
 representing their frequencies in the incomplete sample)

• Select parameter atom and its truth value (signed literal) which minimizes
 derivative (steepest descent)

• In that sense, we make the iterated (multi-model) SAT/ASP solving process
 differentiable

Differentiable SAT/ASP

Cost functions and parameter atoms for PLP (1)
• Various possibilities for cost function. For deductive probabilistic inference, we can use

Mean Squared Error (MSE):

• Parameter atoms : atoms which carry given (user-defined) probabilities (weights)

• Parameter atom frequencies updated with each sampled model

• Weighted rules and weighted models can be rewritten as instances of this
approach

• Arbitrary MSE cost, parameter atoms, ASP/SAT rules/clauses…; no required
independence assumptions

• But of course not all cost functions and logic programs/formulas have a solution (cost=0)

Cost functions and parameter atoms for PLP (2)
• The Answer Set input program (or analogously SAT formula) can contain arbitrary

rules and facts.

• For parameter atoms, it is sensible to add so-called spanning rules which make
the parameter atoms nondeterministic (although this is not a requirement for
our algorithms)

• MSE cost function, e.g.,:
1

2
((𝛽 𝑎 − 0.2)2+(𝛽 𝑏 − 0.6)2)

 (assigns atom a weight 0.2 and atom b weight 0.6)

Native algorithm: Diff-CDNL-ASP/SAT
• Fastest (currently known) implementation of described approach by directly enhancing
 SAT/ASP solving algorithm

• Current state of the art solving algorithm: CDCL/CDNL

• CDCL (Conflict-Driven Clause Learning) based on older DPLL algorithm but with
 clause learning capability and non-chronological backtracking

• CDNL-ASP (Conflict-Driven Nogood Learning): variant of CDNL with nogoods
 (think of clauses with negated literals) as basic representative concept

• Also comprises loop handling (required for non-tight Answer Set programs)

• CDNL used by Clingo/Clasp (but we’ve created an independent implementation in Scala).
Suitable for SAT as well as ASP solving

• We enhanced CDNL-ASP with a new decision literal selection (branching) policy

Propagator-based approach (1)
• Previous implementation approach fast but cannot use existing ASP or SAT solver
 "out of the box“

• Idea: tweak a regular ASP solver's branching heuristics to decide on parameter atoms‘
 truth values using differentiation

• Various ways to implement this, e.g., domain heuristics, external atoms, HEX?, …

• We use Clingo's propagators; cannot directly implement branching heuristics, but can
be customized to enforce dynamically created singleton clauses (representing our
parameter atom truth assignments)

• Requires outer sampling loop (e.g., Python script using Clingo's Python API) - calls
 ASP solver multiple times until cost goal reached

• Very slow (at least with current prototypical code)

Propagator-based approach (2)

partial derivative (using automatic differentiation): if we
change the frequency of atom pxi (keeping all other
parameter atoms fixed), how does this influence the cost
function?

Propagator-based approach (3)

to simplify diff. for negated literals
(represented as negative numbers)

call automatic differentiation (see prev slide)

Propagator-based approach (4)

negation

previously computed parameter
literal which moves the cost
function into the desired
direction

Mapping to conventional ASP optimization (1)
• Further approach to solve the multi-model cost function: map task to regular
 Answer Set optimization task using reification

• Reify all sample models and (non-constant) atom predicates using model indices

• In MSE case: directly solve for model probability distribution, using linear equation
 solving encoded in ASP

• Does not use derivatives

• Slow. But exemplifies how to translate problem to regular (single or top-k model)
 ASP/SAT optimization

Mapping to conventional ASP optimization (2)

Conclusion
• First approach (to our best knowledge) to differentiation of ASP and SAT solving

• General use case: multi-model optimization with custom cost functions and user-specified
 accuracy

• Probabilistic Logic Programming as primarily targeted (but not only) use case

• Simple and relatively fast (for a probabilistic logic without dependence restrictions) =>SUM’18

• Uses iterative Boolean assignment / answer set sampling for scalability

• Various implementation approaches, including direct (native) approach based on
 CDCL/CDNL or custom branching heuristics

• Alternatively, translation to plain Answer Set optimization possible (but quite slow)

• Planned work: further experiments, theoretical criteria for termination (beyond
 convex cost functions), further optimization of prototype implementations

Any questions?

