Differentiable SAT/ASP

MATTHIAS NICKLES
SCHOOL OF ENGINEERING & INFORMATICS
NATIONAL UNIVERSITY OF IRELAND, GALWAY

Overview

* Introduction

* SAT and Answer Set Programming

* Approach outline

* Cost functions and parameter atoms for PLP

* Native algorithm

* Propagator-based approach

* Mapping to conventional Answer Set optimization
* Preliminary results

* Conclusion

Introduction (1)

* Modern SAT and ASP solvers are mature and fast inference tools

* Geared towards complex search, combinatorial and optimization problems
(ASP & SAT)

* Strong foothold in industry (SAT)

* Rich, Prolog-like syntax but fully declarative (ASP)

* Non-monotonic reasoning (ASP)

* Similar solving techniques, ASP solving = SAT solving + loop handling

* Closely related to Satisfiability Modulo Theories (SMT) and Constraint
Programming

* First-Order logic syntax, action logics, event calculus, ... can be translated to ASP

Introduction (2)

* ASP/SAT solving is a multi-model approach to inference

* Solving can produce some or all models as witnesses (if input is satisfiable)
* Stable models (a.k.a. answer sets) or satisfying Boolean assignments (SAT)

* Multiple alternative models as a natural way to express non-determinism

* Models as a natural way to represent possible worlds (as for PLP)

Introduction (3)

* How can we utilize SAT/ASP solving to compute not just models but
also probability distributions over models?

* We could then use these distributions directly for probabilistic inference tasks

* |dea: distribution finding as a multi-model optimization task, using a suitable
cost function over multiple models

* Generalized to (in principle) arbitrary differentiable multi-model cost functions
* Various solving techniques, outlined in this talk (further methods certainly exist)
* Focus on gradient-based approaches

* Also, we use sampling, for higher efficiency: a sample (a multi-set of models in our case)
represents an approximate solution of the cost function

Input logic language

* SAT: we assume DIMACS-CNF input (set of clauses)

* ASP: Ground Answer Set program consisting of a finite set of normal rules:
a :- by, .., b, not b4,.., not b,.

* Example for an Answer Set program (before grounding, i.e., instantiating X=dilbert):
man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
This program has two so-called stable models ("answer sets") — the possible worlds:

Sml
Sm2

{ man(dilbert), single(dilbert) }
{ man(dilbert), husband(dilbert) }

Approach outline (1)

* Besides CNF-clauses or an Answer Set program, we require
* a user-specified cost function

* a user-specified set of parameter atoms

* Parameter atoms: subset of all atoms/variables which serve as random variables
* Parameter atoms carry frequencies: normalized atom counts within the sample

* Cost function: arbitrary differentiable function parameterized with a vector
of parameter atom frequencies

* |dea: incrementally add models to sample until cost function value < threshold Y

* If process guided by (partial) derivatives of the cost function wrt. parameter atoms:
Differentiable SAT/ASP

Approach outline (2)

* Each time we decide about which parameter atom to add to partial assignment
(the current incomplete model “under construction”):
compute how this decision would influence the overall cost function

=> partial derivatives of cost function wrt. parameter atoms (as variables
representing their frequencies in the incomplete sample)

* Select parameter atom and its truth value (signed literal) which minimizes
derivative (steepest descent)

* In that sense, we make the iterated (multi-model) SAT/ASP solving process
differentiable

Differentiable SAT/ASP

sample = {}
c=w®

'

Sample model m st.
cost(sampleltl m) <c

'

sample = sample |H m
c = cost(sample)

yes

!

c>w

v|sample|<n

T

/

until complete wes

\

Multimodel optimization by cost-directed

model sampling

partial assignment m = {}

Enhance partial assignment, handle conflicts...:

Conventional literal

> assignment(s)

Nondeterministic
parameter literal choice by

dcost
ap

argmin
p

Cost functions and parameter atoms for PLP (1)

* Various possibilities for cost function. For deductive probabilistic inference, we can use
Mean Squared Error (MSE):

cost(07,05,...) == % > i1 (B(6;) — 0;)?

* Parameter atoms #; : atoms which carry given (user-defined) probabilities (weights) ¢;
* Parameter atom frequencies 3(#;) updated with each sampled model

* Weighted rules and weighted models can be rewritten as instances of this
approach

* Arbitrary MSE cost, parameter atoms, ASP/SAT rules/clauses...; no required
independence assumptions

* But of course not all cost functions and logic programs/formulas have a solution (cost=0)

Cost functions and parameter atoms for PLP (2)

* The Answer Set input program (or analogously SAT formula) can contain arbitrary
rules and facts.

* For parameter atoms, it is sensible to add so-called spanning rules which make
the parameter atoms nondeterministic (although this is not a requirement for
our algorithms)

O{a}l. % spanning rule for parameter atom a
O{b}1l.
:— a, b. % an example for a hard rule

* MSE cost function, e.g.,: % ((B(a) — 0.2)*+(B(b) — 0.6)?)
(assigns atom a weight 0.2 and atom b weight 0.6)

Native algorithm: Diff-CDNL-ASP/SAT

- Fastest (currently known) implementation of described approach by directly enhancing
SAT/ASP solving algorithm

* Current state of the art solving algorithm: CDCL/CDNL

* CDCL (Conflict-Driven Clause Learning) based on older DPLL algorithm but with
clause learning capability and non-chronological backtracking

* CDNL-ASP (Conflict-Driven Nogood Learning): variant of CDNL with nogoods
(think of clauses with negated literals) as basic representative concept

* Also comprises loop handling (required for non-tight Answer Set programs)

* CDNL used by Clingo/Clasp (but we’ve created an independent implementation in Scala).
Suitable for SAT as well as ASP solving

* We enhanced CDNL-ASP with a new decision literal selection (branching) policy

Answer o
Set = Nogoods |e— I
Program clauses
s Start new
assignment
Add loop Unit -
nogoods propagation
l Yes Conflict
Conflict? —— handling
] (or UNSAT)
Choose
ASP-mode A | Y85 | Assignment | N°
— stable model? complete? | branching | —
literal
: ;
£
Add 1o sampled i V cost(sampled
models i

.

cost(sampled models)

No

<y?

Yes

\ 4

Return sampled
models

(omitted: optional cost backtracking)

Propagator-based approach (1)

* Previous implementation approach fast but cannot use existing ASP or SAT solver
"out of the box”

* |dea: tweak a regular ASP solver's branching heuristics to decide on parameter atoms’
truth values using differentiation

* Various ways to implement this, e.g., domain heuristics, external atoms, HEX?, ...

* We use Clingo's propagators; cannot directly implement branching heuristics, but can
be customized to enforce dynamically created singleton clauses (representing our
parameter atom truth assignments)

* Requires outer sampling loop (e.g., Python script using Clingo's Python API) - calls
ASP solver multiple times until cost goal reached

* Very slow (at least with current prototypical code)

Propagator-based approach (2)

ps = [(adnumber(fregs['a']), 'a'), (adnumber{fregs['b']), 'b')]

c = ((1*(0.2-ps[0][0])**2) + (1*(0.6-ps[1][@])**2)) [2 # example MSE-shaped cost function
0.6 = target probability of b)

if atom x == "":
return c
else:
pxl1 = next(i for 1,v in enumerate(ps) if v[1l] == atom x)

return c.d(ps[pxi][@])
partial derivative (using automatic differentiation): if we

change the frequency of atom pxi (keeping all other
parameter atoms fixed), how does this influence the cost
function?

Propagator-based approach (3)

for atomlit, atom in param_atoms.iteritems(): # we search for the minimum partial derivative

diff_p = _ cost_ad(freqs, atom) <—— call automatic differentiation (see prev slide)

if diff p < min_diff 1it[1]:
min_diff 1it = (atomlit, diff _p)

diff n = -diff p

if diff n < min_diff_lit[1]:
min_diff 1it = (-atomlit, diff _n)

to simplify diff. for negated literals
(represented as negative numbers)

— branch_param _1it = min_diff 1it[@]

Propagator-based approach (4)

def propagate(self, control, changes):
previously computed parameter

lobal branch param 1lit
& —P - literal which moves the cost

global param_atoms function into the desired
direction
1t branch param 1it != sys.maxint:
if branch param 1it > ©: ¢//

control.add clause([Propagator.solver lits[branch param 1it]], True)

else:

control.add clause([-Propagator.solver lits[abs(branch_param 1it)]], True)

|

negation

Mapping to conventional ASP optimization (1)

* Further approach to solve the multi-model cost function: map task to regular
Answer Set optimization task using reification

* Reify all sample models and (non-constant) atom predicates using model indices

* In MISE case: directly solve for model probability distribution, using linear equation
solving encoded in ASP

* Does not use derivatives

* Slow. But exemplifies how to translate problem to regular (single or top-k model)
ASP/SAT optimization

Mapping to conventional ASP optimization (2)

#const nmodels = 10.

model (1. .nmodels).

mcount (0. .nmodels).

{a(M)} :— model(M). & spanning formulas

{(b(M)} :— model (M).

:— a(M), b(M), model(M). % an example for a background knowledge rule (hard constraint)

wa(nmodels = 2 / 10). % weight a = 0.2
wb (nmodels = 6 / 10). % weight b = 0.6
fa(F) :(— F { a(M): model (M) } F, mcount (F).
fb(F) :— F { b(M): model (M) } F, mcount (F).

diffa(D) :(— D = (W - F)x«2, wa(W), fa(F). % alternatively: D = |F — W|

diffb(D) := D = (W — F)*%2, wb(W), fb(F).

#minimize { DA : diffa(DA) }. % minimize the distances betw. weights and frequencies
#minimize { DB : diffb(DB) }.

2007
1801
1601
140
1207

0
" 100
80

60

201

40

Smokers

— SmokersDifferential SAT/ASP Diff-ASP-Reification,tol = 20 #models = 400
== SmokersDifferential SAT/ASP Diff-CONL-ASP/SAT,w = 0.001,autodiff
-~ SmokersDifferential SAT/ASP Diff-ASP-ThProp,w = 0.001 autodiff

— SmokersDifferential SAT/ASP Diff-ASP-Reification fol = 20 #models = 800
-~ SmokersDifferential SAT/ASP Diff-CONL-ASP/SAT,y = 0.05,autodiff

- = SmokersDifferential SAT/ASP Diff-ASP-ThProp,p = 0.05,autodiff

#Smokers

Conclusion

* First approach (to our best knowledge) to differentiation of ASP and SAT solving

* General use case: multi-model optimization with custom cost functions and user-specified
accuracy

* Probabilistic Logic Programming as primarily targeted (but not only) use case
* Simple and relatively fast (for a probabilistic logic without dependence restrictions) =>SUM’18
* Uses iterative Boolean assignment / answer set sampling for scalability

* Various implementation approaches, including direct (native) approach based on
CDCL/CDNL or custom branching heuristics

* Alternatively, translation to plain Answer Set optimization possible (but quite slow)

* Planned work: further experiments, theoretical criteria for termination (beyond
convex cost functions), further optimization of prototype implementations

Any questions?

