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Introduction (1) 
• Modern SAT and ASP solvers are mature and fast inference tools 

• Geared towards complex search, combinatorial and optimization problems  
 (ASP & SAT) 

• Strong foothold in industry (SAT)  

• Rich, Prolog-like syntax but fully declarative (ASP) 

• Non-monotonic reasoning (ASP) 

• Similar solving techniques, ASP solving ≈ SAT solving + loop handling 

• Closely related to  Satisfiability Modulo Theories (SMT) and Constraint   
 Programming 

• First-Order logic syntax, action logics, event calculus, … can be translated to ASP 

 



Introduction (2) 
• ASP/SAT solving is a multi-model approach to inference 

• Solving can produce some or all models as witnesses (if input is satisfiable)  

• Stable models (a.k.a. answer sets) or satisfying Boolean assignments (SAT) 

• Multiple alternative models as a natural way to express non-determinism  

• Models as a natural way to represent possible worlds (as for PLP) 

 

 

 



Introduction (3) 
• How can we utilize SAT/ASP solving to compute not just models but  
 also probability distributions over models? 

• We could then use these distributions directly for probabilistic inference tasks 

• Idea: distribution finding as a multi-model optimization task, using a suitable  
  cost function over multiple models 

• Generalized to (in principle) arbitrary differentiable multi-model cost functions 

• Various solving techniques, outlined in this talk (further methods certainly exist) 

• Focus on gradient-based approaches 

• Also, we use sampling, for higher efficiency: a sample (a multi-set of models in our case)  
 represents an approximate solution of the cost function 

 

 

 



Input logic language 
• SAT: we assume DIMACS-CNF input (set of clauses)  

• ASP: Ground Answer Set program consisting of a finite set of normal rules:  
 a :- b1, …, bk, not bk+1,…, not bm. 

• Example for an Answer Set program (before grounding, i.e., instantiating X=dilbert): 

  man(dilbert).  

  single(X) :- man(X), not husband(X).  

  husband(X) :- man(X), not single(X). 

  This program has two so-called stable models ("answer sets") – the possible worlds: 

  Sm1 = { man(dilbert), single(dilbert) } 
  Sm2 = { man(dilbert), husband(dilbert) } 

 

 

 

 



Approach outline (1) 
• Besides CNF-clauses or an Answer Set program, we require  

• a user-specified cost function 

• a user-specified set of parameter atoms 

• Parameter atoms: subset of all atoms/variables which serve as random variables 

• Parameter atoms carry frequencies: normalized atom counts within the sample 

• Cost function: arbitrary differentiable function parameterized with a vector  
 of parameter atom frequencies 

• Idea: incrementally add models to sample until cost function value ≤ threshold  

• If process guided by (partial) derivatives of the cost function wrt. parameter atoms:  
 Differentiable SAT/ASP 

 
 

 

 

 

 



Approach outline (2)  
• Each time we decide about which parameter atom to add to partial assignment 
 (the current incomplete model “under construction”): 
  compute how this decision would influence the overall cost function 

   => partial derivatives of cost function wrt. parameter atoms (as variables 
        representing their frequencies in the incomplete sample) 

• Select parameter atom and its truth value (signed literal) which minimizes 
 derivative (steepest descent) 

• In that sense, we make the iterated (multi-model) SAT/ASP solving process     
 differentiable 

 

 

 
  
 

 
 

 

 

 

 



Differentiable SAT/ASP 



Cost functions and parameter atoms for PLP (1) 
• Various possibilities for cost function. For deductive probabilistic inference, we can use 

Mean Squared Error (MSE): 

 

 

• Parameter atoms     : atoms which carry given (user-defined) probabilities (weights)  

• Parameter atom frequencies           updated with each sampled model 
 

• Weighted rules and weighted models can be rewritten as instances of this 
approach 

• Arbitrary MSE cost, parameter atoms, ASP/SAT rules/clauses…; no required  
independence assumptions  

• But of course not all cost functions and logic programs/formulas have a solution (cost=0) 
 

 

 

 

 



Cost functions and parameter atoms for PLP (2) 
• The Answer Set input program (or analogously SAT formula) can contain arbitrary 

rules and facts. 

• For parameter atoms, it is sensible to add so-called spanning rules which make 
the parameter atoms nondeterministic (although this is not a requirement for 
our algorithms) 

 

 

 

 

• MSE cost function, e.g.,: 
1

2
((𝛽 𝑎 − 0.2)2+(𝛽 𝑏 − 0.6)2) 

  (assigns atom a weight 0.2 and atom b weight 0.6) 
 

 

 

 

 

 

 

 

 



Native algorithm: Diff-CDNL-ASP/SAT 
• Fastest (currently known) implementation of described approach by directly enhancing  
 SAT/ASP solving algorithm 

• Current state of the art solving algorithm: CDCL/CDNL 

• CDCL (Conflict-Driven Clause Learning) based on older DPLL algorithm but with   
 clause learning capability and non-chronological backtracking 

• CDNL-ASP (Conflict-Driven Nogood Learning): variant of CDNL with nogoods 
 (think of clauses with negated literals) as basic representative concept 

• Also comprises loop handling (required for non-tight Answer Set programs) 

• CDNL used by Clingo/Clasp (but we’ve created an independent implementation in Scala).  
Suitable for SAT as well as ASP solving 

• We enhanced CDNL-ASP with a new decision literal selection (branching) policy  

 





Propagator-based approach (1) 
• Previous implementation approach fast but cannot use existing ASP or SAT solver  
  "out of the box“ 

• Idea: tweak a regular ASP solver's branching heuristics to decide on parameter atoms‘ 
  truth values using differentiation  

• Various ways to implement this, e.g., domain heuristics, external atoms,  HEX?, … 

• We use Clingo's propagators; cannot directly implement branching heuristics, but can 
be customized to enforce dynamically created singleton clauses (representing our 
parameter atom truth assignments) 

• Requires outer sampling loop (e.g., Python script using Clingo's Python API) - calls 
 ASP solver multiple times until cost goal reached 

• Very slow (at least with current prototypical code) 

 



Propagator-based approach (2) 

partial derivative (using automatic differentiation): if we 
change the frequency of atom pxi (keeping all other 
parameter atoms fixed), how does this influence the cost 
function? 



Propagator-based approach (3) 

to simplify diff. for negated literals  
(represented as negative numbers) 

call automatic differentiation (see prev slide) 



Propagator-based approach (4) 

negation 

previously computed parameter 
literal which moves the cost 
function into the desired 
direction 



Mapping to conventional ASP optimization (1) 
• Further approach to solve the multi-model cost function: map task to regular   
 Answer Set optimization task using reification 

• Reify all sample models and (non-constant) atom predicates using model indices 

• In MSE case: directly solve for model probability distribution, using linear equation 
 solving encoded in ASP 

• Does not use derivatives 

• Slow. But exemplifies how to translate problem to regular (single or top-k model) 
 ASP/SAT optimization 



Mapping to conventional ASP optimization (2) 





Conclusion 
• First approach (to our best knowledge) to differentiation of ASP and SAT solving 

• General use case: multi-model optimization with custom cost functions and user-specified  
 accuracy 

• Probabilistic Logic Programming as primarily targeted (but not only) use case 

• Simple and relatively fast (for a probabilistic logic without dependence restrictions) =>SUM’18 

• Uses iterative Boolean assignment / answer set sampling for scalability 

• Various implementation approaches, including direct (native) approach based on  
 CDCL/CDNL or custom branching heuristics 

• Alternatively, translation to plain Answer Set optimization possible (but quite slow) 

• Planned work: further experiments, theoretical criteria for termination (beyond  
 convex cost functions), further optimization of prototype implementations 

  



Any questions? 


