
Probabilistic Inference in SWI-Prolog

Fabrizio Riguzzi Jan Wielemaker Riccardo Zese

MCS – DE – University of Ferrara, Centrum Wiskunde & Informatica
[fabrizio.riguzzi,riccarzo.zese]@unife.it, j.wielemaker@cs.vu.nl

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 1 / 31

Outline

Tabling in SWI-Prolog

Answer Subsumption

PITA

PITA for SWI-Prolog

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 2 / 31

Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]

A probabilistic logic program defines a probability distribution over normal logic programs
(called instances or possible worlds or simply worlds)

The distribution is extended to a joint distribution over worlds and interpretations (or
queries)

The probability of a query is obtained from this distribution

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 3 / 31

Probabilistic Logic Programming (PLP) Languages under the Distribution
Semantics

Probabilistic Logic Programs [Dantsin RCLP91]

Probabilistic Horn Abduction [Poole NGC93], Independent Choice Logic (ICL) [Poole
AI97]

PRISM [Sato ICLP95]

Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al ICLP04]

ProbLog [De Raedt et al IJCAI07]

They differ in the way they define the distribution over logic programs

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 4 / 31

Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing.pl

C1 = strong sneezing(X) : 0.3 ; moderate sneezing(X) : 0.5←
flu(X).

C2 = strong sneezing(X) : 0.2 ; moderate sneezing(X) : 0.6←
hay fever(X).

C3 = flu(bob).
C4 = hay fever(bob).

Distributions over the head of rules

Worlds obtained by selecting one atom from the head of every grounding of each clause

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 5 / 31

http://cplint.eu/e/sneezing.pl

Tabling

A logic programming technique for saving time and ensuring termination for programs
without function symbols

The Prolog interpreter keeps a store of the subgoals encountered in a derivation together
with answers to these subgoals

If one of the subgoals is encountered again, its answers are retrieved from the store rather
than re-computing them

Implemented in XSB, YAP, SWI-Prolog, B-Prolog, Ciao

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 6 / 31

Tabling in SWI-Prolog

Implemented in SWI-Prolog using delimited control [Desouter et al TPLP15]

Two operators, reset and shift

reset(Goal,Cont,Term1) executes Goal and unifies the other two arguments on the
basis of the results of calls to shift/1

If Goal calls shift(Term2)

the execution of the goal is interrupted
the rest of its code up to the nearest call to reset/3, called delimited continuation, is
represented as a Prolog term and unified with Cont in reset/3

Term2 is unified with Term1

The execution restarts from the code just after the call to reset/3

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 7 / 31

Example of Delimited Continuation

p :- reset(q,Cont,Term1),

writeln(Term1),

writeln(Cont),

writeln(’end’).

q :- writeln(’before shift’),

shift(’return value’),

writeln(’after shift’).

shift/1 instantiates Cont with the writeln(’after shift’) goal and Term1 with the
term ’return value’ in reset/3
?- p.

before shift

return value

[$cont$(785488,[])]

end

In q the execution is interrupted by the call to shift/1. The continuation in this case is
not called, therefore what follows the call to shift/1 is not executed

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 8 / 31

Example of Delimited Continuation

If we replace writeln(Cont) with call(Cont)
?- p.

before shift

after shift

end

The continuation is called and the goal writeln(’after shift’) is executed

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 9 / 31

Tabling in SWI-Prolog

Predicates are declared as tabled using the table/1 directive

Tabled predicates are transformed

table/2 retrieves the table data structure containing the answers to the tabled predicate

:- table p/2.

p(X,Y) :- p(X,Z), e(Z,Y).

p(X,Y) :- e(X,Y).

→

p(X,Y) :- table(p(X,Y),’p tabled’(X,Y)).

’p tabled’(X,Y) :- p(X,Z), e(Z,Y).

’p tabled’(X,Y) :- e(X,Y).

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 10 / 31

Tabling in SWI-Prolog

When a tabled predicate is called, the execution enters in a reset phase for delimited
answer computation

If this phase succeeds normally, the answer is added to the table of the tabled predicate

If the tabled predicate calls a predicate that is tabled as well, then the computation enters
in the shift phase without producing an answer and the first predicate is suspended,
capturing the reminder in Cont

At this point the so-called completion phase starts, collecting all the possible
continuations, to find answers for the tabled predicate in the reset phase

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 11 / 31

Tabling in SWI-Prolog

A leader is a call to a tabled predicate that has only non-tabled ancestors in the dynamic
call graph

Other calls to tabled predicates are followers

Every follower has a leader as its ancestor

The leader and its followers make up a scheduling component

Multiple scheduling components can occur during program execution

completion performed on one component at a time

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 12 / 31

Tabling in SWI-Prolog

For each component:

Global worklist: a queue of tables, each tables maps a subgoal for a tabled predicate (call
variant) to a trie containing its answers and to a local worklist, a dequeue containing
answers and dependencies

dependency=(source, continuation, target)

If collecting answers for a tabled call p requires the answers for a tabled call q (q may be
p itself), then p is the target and q is the source

Given an answer for the source call q, we can obtain an answer for the target call p by
resuming the suspended continuation

The continuation’s answer is then unified with p

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 13 / 31

Tabling in SWI-Prolog

completion phase: tables from the global worklist are extracted one at a time

The local worklist of the table is used to find all the answers for the corresponding tabled
call

During the reset phase, each time an answer is found for a call p, it is added to the list
of answers in the table for p and to the left of the dequeue of the local worklist of
subgoals calling p

During the shift phase, a new dependency for p is added to the right of its worklist

Then, pairs (answer, dependency) are extracted from the dequeue of the local worklist to
try to find new answers

The answer in the pair is an answer for the source predicate

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 14 / 31

Tabling in SWI-Prolog

a1 d1 d1 a1 a1
.
am dn do ap aq

d1 a1 d1 a1 a1
.
dn am do ap aq

Answers & Dependencies

(answer, dependency) created by associating an answer to the dependency that is
immediately to its right in the dequeue

After the combination, the answer and the dependency are swapped, moving the answer
to the right of the dependency

Then, answer and dependency from the pair are combined using values in answer to
instantiate variables in source, continuation and target

The predicate in continuation is called to find new answers for the target

The new answer for target is then added to the answers list in its table and to the left of
the dequeue of the local worklists where the predicate is the source of some dependencies

The completion phase stops when all the answers in all the local worklists are on the left
of all the dependencies

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 15 / 31

Mode-Directed Tabling and Answer Subsumption

Answer subsumption, also called mode-directed tabling [Swift, Warren TPLP 12,
Vandenbroucke et al TPLP 16]

A subset of the predicate arguments defines the call variant while answers for the
remaining arguments are aggregated

When a new answer is found, it is aggregated with an existing answer in the table

Classical aggregation: minimum

SWI-Prolog’s original tabling implementation was extended with mode-directed tabling

Specification inherited from XSB, B-Prolog, YAP,

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 16 / 31

Answer Subsumption Example

:- table connection(_,_,min).

connection(X, Y,1) :-

connection(X, Y).

connection(X, Y,N) :-

connection(X, Z,N1),

connection(Z, Y),

N is N1+1.

connection(’Amsterdam’, ’Schiphol’).

connection(’Amsterdam’, ’Haarlem’).

connection(’Schiphol’, ’Leiden’).

connection(’Haarlem’, ’Leiden’).

connection(’Amsterdam’, ’Leiden’).

?- connection(’Amsterdam’,’Leiden’,N).

N=1

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 17 / 31

Mode-Directed Tabling and Answer Subsumption

Most generic aggregation function: lattice, a user defined predicate determines the
subsumer for the aggregated answer so far and a new answer

:- table pred(_,_,lattice(join))).

The answer table assigns each answer in the trie an aggregated value

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 18 / 31

Mode-Directed Tabling and Answer Subsumption

Tabling does not guarantee a particular order in which suspended computations are
resumed and thus requires the aggregation function to produce the correct result
regardless of the order

If one mode-directed tabled goal is the follower of another we may get incorrect results

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 19 / 31

Mode-Directed Tabling and Answer Subsumption

:- table

p(lattice(or/3)),

s(lattice(or/3)).

or(A,B,A-B).

p(A) :- s(A).

s(1).

s(2).

In the initial implementation p(A) succeeded with answer A = 1-2-(1-2) instead of the
desired A = (1-2)

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 20 / 31

Mode-Directed Tabling and Answer Subsumption

[Vandenbroucke et al TPLP 16] showed that many implementations of mode-directed
tabling produce unsound results

Formal semantics for mode-directed tabling that allows the evaluation of the soundness of
implementations

Aggregation is a post-processing step

Real systems aggregate intermediate results during resolution for efficiency and to avoid
loops

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 21 / 31

Mode-Directed Tabling and Answer Subsumption

In SWI-Prolog: create a new component for every fresh mode-directed tabled goal we
encounter

This component is completed before execution of the parent component is resumed with
the complete aggregated result

If in a subcomponent we encounter a variant of a tabled goal that was started before the
subcomponent but has not yet been completed, failure

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 22 / 31

PITA

PITA [Riguzzi, Swift ICLP10, ICLP11, TPLP13] applies a program transformation to an
LPAD to create a normal program that contains calls for manipulating BDDs

Library:

init, end : for allocation and deallocation of a BDD manager, a data structure used to keep
track of the memory for storing BDD nodes;
zero(-BDD), one(-BDD), not(+BDDI, -BDDO), and(+BDD1, +BDD2, -BDDO),
or(+BDD1, +BDD2, -BDDO): Boolean operations between BDDs;
add var(+N Val,+Probs,-Var): addition of a new multi-valued variable with N Val values
and parameters Probs;
equality(+Var,+Value,-BDD): BDD represents Var=Value, i.e. that the random variable Var
is assigned Value in the BDD;
ret prob(+BDD,-P): returns the probability of the formula encoded by BDD.

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 23 / 31

PITA transformation

Auxiliary predicate get_var_n/4 used to wrap add_var/3 and avoid adding a new
variable when one already exists for an instantiation

Atom a: PITA(a,D), is a with the variable D added as the last argument

Negative literal b = not a:

(PITA(a,DN)→ not(DN,D); one(D))

Conjunction of literals b1, . . . , bm:

PITA(b1, . . . , bm,D) = one(DD0),
PITA(b1,D1), and(DD0,D1,DD1), . . . ,
PITA(bm,Dm), and(DDm−1,Dm,D).

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 24 / 31

PITA transformation

Disjunctive clause
Cr = h1 : Π1 ∨ . . . ∨ hn : Πn ← b1, . . . , bm.

PITA(Cr , i) = PITA(hi ,D)← PITA(b1, . . . , bm,DDm),
get var n(r , S , [Π1, . . . ,Πn],Var), equality(Var , i ,DD),
and(DDm,DD,D).

for i = 1, . . . , n, where S is a list containing all the variables appearing in r

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 25 / 31

Medical example

Clause C1 from the example LPAD is translated to
strong sneezing(X ,BDD)← one(BB0), flu(X ,B1),

and(BB0,B1,BB1),
get var n(1, [X], [0.3, 0.5, 0.2],Var),
equality(Var , 1,B), and(BB1,B,BDD).

moderate sneezing(X ,BDD)← one(BB0), flu(X ,B1),
and(BB0,B1,BB1),
get var n(1, [X], [0.3, 0.5, 0.2],Var),
equality(Var , 2,B), and(BB1,B,BDD).

clause C3:
flu(david ,BDD) ← one(BDD).

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 26 / 31

PITA transformation

Predicates tabled as
: −table p(, . . . , lattice(or/3)),

prob(Goal,P) to answer queries:

prob(Goal ,P)← init, retractall(var(, ,)),
add bdd arg(Goal ,BDD,GoalBDD),
(call(GoalBDD)→ ret prob(BDD,P); P = 0.0),
end .

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 27 / 31

Extension of PITA for SWI-Prolog

Extra library predicate:

and check(+D1,+D2,-DO) fails if one of the input arguments is the BDD representing the
Boolean constant 0, otherwise it succeeds returning the conjunction of the input arguments

The tabling implementation in SWI-Prolog doesn’t handle cut

Transformation for a negative literal b = not a, PITA(b,DN):

PITA(a,D), not(D,DN)

Conjunction of literals b1, . . . , bm:

PITA(b1, . . . , bm,D) = one(DD0),
PITA(b1,D1), and check(DD0,D1,DD1), . . . ,
PITA(bm,Dm), and check(DDm−1,Dm,D).

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 28 / 31

Extension of PITA for SWI-Prolog

For each predicate p/n, an extra clause (zero clauses) of the form

p(X1, . . . ,Xn,D)← nonvar(X1), . . . , nonvar(Xn), zero(D).

If the goal fails, the only BDD returned is the one representing the 0 constant, negated
we get the 1 constant

In conjunctions, failure of and check/3

In disjunctions, the zero BDD is disjoint with other BDDs, keeping unchanged their truth
value

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 29 / 31

Conclusions & Future Work

Conclusions

Tabling in SWI-Prolog
Answer Subsumption
PITA
PITA for SWI-Prolog

Future work

Sharing tables between threads, incremental
tabling, handling negation, improving space and
time performance
Extending PITA for probabilistic abductive logic
programs
Comparison with XSB in terms of performance

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 30 / 31

Fadja and Riguzzi (UNIFE, CWI) Probabilistic Inference in SWI-Prolog 31 / 31

