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Personal background
BSc Computer Science & Statistics

MSc Advanced Computer Science (AI)

PhD Computer Science

2000-2018 Researcher in projects and labs

2019-2025 Independent academic positions:
▶ Essex (CS)
▶ Cardiff (Medicine)
▶ Pirbright (livestock immunity)

Data analytics, algorithms, machine learning and software
engineering for research in biomedicine with emphasis on
cancer.

Open source code for analytics- including machine learning.

Linux/Unix user for over 35 years.



Stream 1. (York) Bayesian machine learning

How
can we incorporate existing (biological) knowledge

in the analysis of new experimental data

Bayesian
methods allow for the incorporation of prior

knowledge and expectations, although often applications use
agnostic priors



Bayesian machine learning theory

Bayes’ Theorem

p(M |D) =
p(D |M)p(M)∑
M p(D |M)p(M)

Metropolis-Hastings

α(Mi ,M∗) = min

{
q(M∗,Mi)P (D |M∗)P (M∗)
q(Mi ,M∗)P (D |Mi)P (Mi)

,1
}



Stream 1. (York) Bims

A probabilistic programming framework for Bayesian machine
learning of structured statistical models (classification trees
and Bayesian networks).

Allows the encoding of prior information in the form of a
probabilistic logic program.

▶ Theory (York, 2000-5, KR paper 2017)
▶ Applications

(Edinburgh, 2006-8, IAH 2009, NKI 2013, Sanger 2022)



Learning binding molecules

Edinburgh: Pyruvate kinase interactors improve chances of
discovering binding molecules based on examples from
screened library of chemicals

pyruvate kinase affinity data
582 Active and 582 Inactive, with 1100 property descriptors
for each molecule. Compared to Feed Forward NNs and SVMs.

sensitivity

specificity



Stream 2. (Imperial) Knowledge-based data analytics

tkSilac: tyrosine kinase screen
▶ MCF7 cell line
▶ 33 SILAC runs
▶ 65/66 expressed tyrosine kinases

▶ 4739 proteins quantified in some experiment
▶ 1000 proteins quantified in 60 or more TK KO

Molecular and Cellular Proteomics (MCP) 2015



(Imperial) Knowledge-based data analytics



herceptin resistance (BT474HR) — ATG9A /
autophagy

tyrosine kinase screen
Molecular and Cellular Proteomics (MCP) 2015

KSR1: Breast Cancer Res. and Treat., 2015

ATG9A: Oncotarget 2016
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proteomics data analytics (Imperial)

tyrosine kinase screen
Molecular and Cellular Proteomics (MCP) 2015

KSR1:
Breast Cancer Res. and Treat., 2015

ATG9A:
Oncotarget 2016

Prolog libraries1:
Real (600), proSQLite (> 1200), bio_analytics

bio_db (currently: 91 tables, 55 M records
on human, mouse, chicken)

1work started at NKI



(Sanger) Bayesian networks in cancer genomics

X.label
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MPN: myeloproliferative neoplasms

New England Journal of Medicine, October 2018



myeloma structural variations

t_14_16

del13q14

HDR

t_4_14

delCYLD

t_11_14

del17p13 NRAS gain1q21

TP53 delFAM46C

delTRAF3DIS3

KRAS
# events (shown med=225,max=643)
Co-occur (shown odds=4)
Mut.excl (shown odds=0.25)
Fisher test odds

Nature Communications, August 2019



BNs in cancer genomics

▶ MPN published in New England J. of Medicine, Oct, 2018
(cited > 680 )

▶ multiple myeloma: in Nature Communications
(3rd author), Aug, 2019 (cited > 300)

▶ colorectal: January 2020
(with Dutch collaborators - J. of Clin. Oncology)

▶ 1st author methods paper:
Communications Biology (April 2022)



Renal carcinoma, Bayesian estimate

which early intervention could prevent renal cell carcinomas. We

used our Bayesian model to simulate the age-incidence curves

of sporadic clear cell renal cell carcinoma if the number of cells

carrying 3p loss were reduced (Figures 7E–7G). This suggests

that we could halve the incidence of sporadic clear cell renal

cell carcinoma within the normal human lifespan by reducing

the 3p-LOH clone size by 50% (Figure 7F) and have even more

profound benefits with more cell kill (Figure 7G).

One of the reasons that this could be such an interesting pre-

ventative opportunity is that the region of 3p loss invariably en-

compasses all four tumor suppressor genes of VHL, PBRM1,

BAP1, and SETD2, and hence spans at least 40 Mb. There are

A

B

E

H

F

C D

G

Figure 7. Mathematical Modeling of Clear Cell Renal Cell Carcinoma Evolution

(A) Schematic depicting how the age of incidence of renal cell carcinoma may be modeled as the sum of waiting times; Z1 representing the time to 3p loss, Z2

representing the time to VHL inactivation, and Z3 representing the time from bi-allelic loss of VHL to clinically detected tumor. Z1 and Z3 are modeled by gamma

distributions and Z2 by an exponential distribution of the product of n, the number of cells with 3p loss and m, the calculated VHL mutational rate.

(B–D) The posterior distribution of the waiting times for Z1 (B), the number of cells with 3p loss (C), and the waiting time for Z3 (D) with 95% posterior intervals.

(E–G) The effect on age-incidence curves for sporadic kidney cancer with reduction of the 3p loss clone size by 25 (E), 50 (F), and 75% (G), with 95% posterior

intervals shaded. (H) Location of genes with loss of function intolerance >90% (Lek et al., 2016) that lie within the region of ubiquitous loss in clear cell renal cell

carcinoma. The locations of the canonical clear cell tumor suppressor genes are annotated in blue below the x axis.

Cell 173, 611–623, April 19, 2018 619

(cited > 550)



scRNA-seq pig mucosal immunity - all runs
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Differential expression
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experience with data science

Data analytics, algorithms, machine learning and engineering
for research software run on a variety of computing systems.

Open source code for analytics- including machine learning.

Academic lead of HPC system at Pirbright
▶ instigated project based code development with use of

github
▶ trained bioinformatician and biologists in the use of HPC
▶ data managment for sequencing facility

Linux/Unix user for over 35 years.



experience with big databases

Programmatic access to best biological databases
▶ NCBI/Entrez
▶ Ensembl
▶ Uniprot
▶ HGNC
▶ Gene Ontology

across a number of species
▶ human
▶ mouse
▶ chicken
▶ porcine
▶ bovine

ENSGene

ENSProtein

ENTreZ
GONTerm

GONaMe

HGNC

PREVious symbol

SYMBol

SYNOnym

UNIProtein

HGNC

Ensembl

NCBI/Entrez

UNIPROT

GO



Research analytics programme building

Building data-rich research analytics programmes
based on experience

(a) the use of advanced AI in genomic cancer
cohorts (2015-2019, Sanger Institute)

(b) scRNA and spatial transcriptomics for
immunity (2022-present) Pirbright Institute,
B-cell livestock immunity



computational biology roadmap

▶ contribute access to computational resources and
explainable AI and ML expertise to all groups

▶ get involved early in
the formulation of scientific question

▶ iterative,
refining process,

forming a common language
▶ cultivate data analytics within

biology and medicine
▶ empower causality in biomedicine via explainable AI



External collaborators

▶ Jyoti Nangalia (MPN, Sanger)
▶ Francesco Maura (myeloma, MSKCC, New York)
▶ Tassos Karadimitris (myeloma, Imperial)
▶ Georgios Giamas (glioblastoma, Zhejiang/Sussex)
▶ James Cussens (ML, Bristol)

Thank you


