knowledge AI in computational biomedicine

Nicos Angelopoulos

The Pirbright Institute
Head of Computational Biology
& co-lead of bioinformatics

https://stoics.org.uk/~nicos
nicos@email.stoics.org.uk

25.08.28

Personal background

BSc Computer Science & Statistics
MSc Advanced Computer Science (AI)
PhD Computer Science

2000-2018 Researcher in projects and labs 2019-2025 Independent academic positions:

- ► Essex (CS)
- Cardiff (Medicine)
- Pirbright (livestock immunity)

Data analytics, algorithms, machine learning and software engineering for research in biomedicine with emphasis on cancer.

Open source code for analytics- including machine learning.

Linux/Unix user for over 35 years.

Stream 1. (York) Bayesian machine learning

How

can we incorporate existing (biological) knowledge in the analysis of new experimental data

Bayesian

methods allow for the incorporation of prior knowledge and expectations, although often applications use agnostic priors

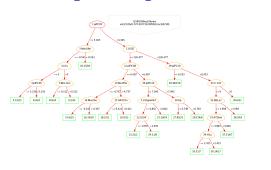
Bayesian machine learning theory

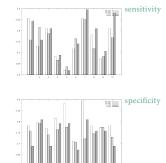
Bayes' Theorem

$$p(M|D) = \frac{p(D|M)p(M)}{\sum_{M} p(D|M)p(M)}$$

Metropolis-Hastings

$$\alpha(M_{i}, M_{*}) = min \left\{ \frac{q(M_{*}, M_{i})P(D|M_{*})P(M_{*})}{q(M_{i}, M_{*})P(D|M_{i})P(M_{i})}, 1 \right\}$$


Stream 1. (York) Bims


A probabilistic programming framework for Bayesian machine learning of structured statistical models (classification trees and Bayesian networks).

Allows the encoding of prior information in the form of a probabilistic logic program.

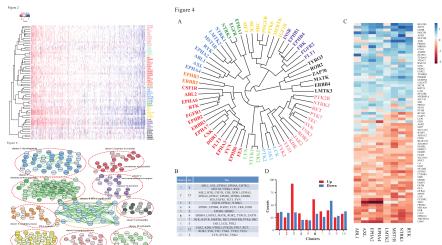
- ► Theory (York, 2000-5, KR paper 2017)
- ► Applications (Edinburgh, 2006-8, IAH 2009, NKI 2013, Sanger 2022)

Learning binding molecules

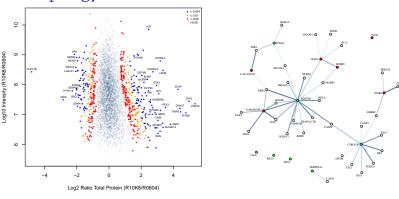
Edinburgh: Pyruvate kinase interactors improve chances of discovering binding molecules based on examples from screened library of chemicals

pyruvate kinase affinity data

582 Active and 582 Inactive, with 1100 property descriptors for each molecule. Compared to Feed Forward NNs and SVMs.


Stream 2. (Imperial) Knowledge-based data analytics

tkSilac: tyrosine kinase screen


- ► MCF7 cell line
- ▶ 33 SILAC runs
- ► 65/66 expressed tyrosine kinases
- 4739 proteins quantified in some experiment
- ▶ 1000 proteins quantified in 60 or more TK KO

Molecular and Cellular Proteomics (MCP) 2015

(Imperial) Knowledge-based data analytics

herceptin resistance (BT474HR) — ATG9A / autophagy

tyrosine kinase screen

Molecular and Cellular Proteomics (MCP) 2015

KSR1: Breast Cancer Res. and Treat., 2015

ATG9A: Oncotarget 2016

proteomics data analytics (Imperial)

tyrosine kinase screen

Molecular and Cellular Proteomics (MCP) 2015

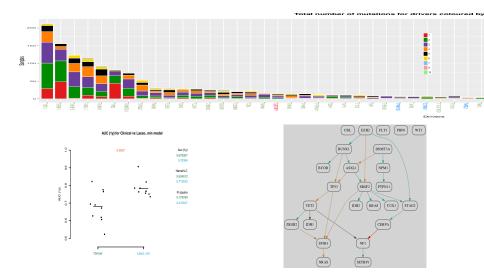
KSR1:

Breast Cancer Res. and Treat., 2015

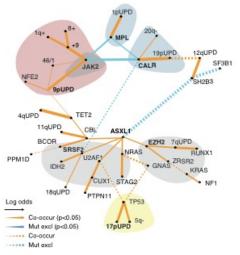
ATG9A:

Oncotarget 2016

Prolog libraries¹:

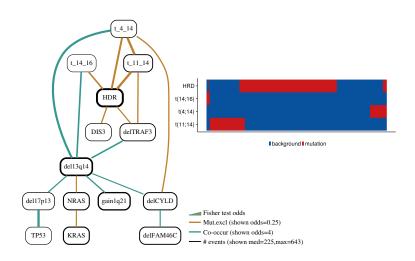

Real (600), proSQLite (> 1200), bio_analytics

bio_db (currently: 91 tables, 55 M records on human, mouse, chicken)



¹work started at NKI

(Sanger) Bayesian networks in cancer genomics

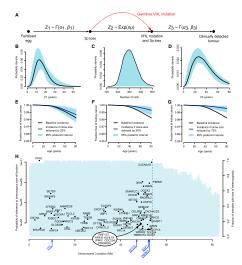


MPN: myeloproliferative neonlasms

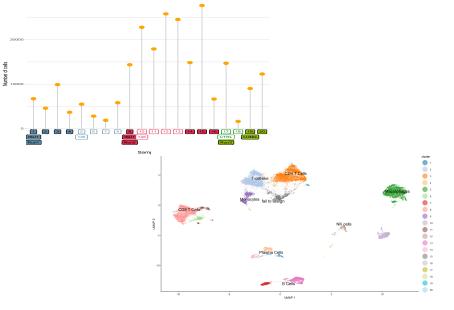
New England Journal of Medicine, October 2018

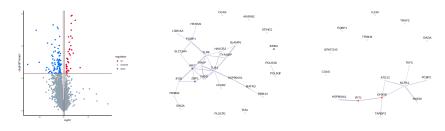
myeloma structural variations

Nature Communications, August 2019


BNs in cancer genomics

- ► MPN published in New England J. of Medicine, Oct, 2018 (cited > 680)
- multiple myeloma: in Nature Communications (3rd author), Aug, 2019 (cited > 300)
- colorectal: January 2020 (with Dutch collaborators - J. of Clin. Oncology)
- ► 1st author methods paper: Communications Biology (April 2022)


Renal carcinoma, Bayesian estimate



scRNA-seq pig mucosal immunity - all runs

Differential expression

+ve Reg of Innate Imm.

Reg of Defense Response to Virus

experience with data science

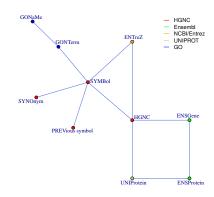
Data analytics, algorithms, machine learning and engineering for research software run on a variety of computing systems.

Open source code for analytics- including machine learning.

Academic lead of HPC system at Pirbright

- instigated project based code development with use of github
- trained bioinformatician and biologists in the use of HPC
- data managment for sequencing facility

Linux/Unix user for over 35 years.


experience with big databases

Programmatic access to best biological databases

- ► NCBI/Entrez
- ► Ensembl
- Uniprot
- ► HGNC
- Gene Ontology

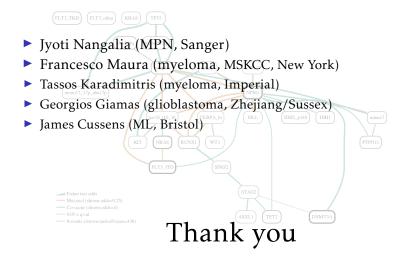
across a number of species

- human
- mouse
- chicken
- porcine
- bovine

Research analytics programme building

Building data-rich research analytics programmes based on experience

- (a) the use of advanced AI in genomic cancer cohorts (2015-2019, Sanger Institute)
- (b) scRNA and spatial transcriptomics for immunity (2022-present) Pirbright Institute, B-cell livestock immunity


computational biology roadmap

- contribute access to computational resources and explainable AI and ML expertise to all groups
- get involved early in the formulation of scientific question
- iterative, refining process, forming a common language
- cultivate data analytics within biology and medicine

empower causality in biomedicine via explainable AI

External collaborators

