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FRAMING THE PROBLEM

UNSTRUCTURED MACHINE LEARNING (DATA ONLY)

▸ Graphical models? (E.g.,) Bayesian nets (Pearl, 1984) 

▸ Fast (and deep)? Sum-product nets (Domingos, 2012) 

▸ Robust (and cautious)? Credal nets (Cozman, 2000) 

▸ Deep and robust? Credal SPNs (Mauá et al., 2017)

CN inference harder than BN 

(e.g., polytrees vs. binary polytrees), 

SPNs/CSPNs less severe transition



FRAMING THE PROBLEM (CON’T)

STRUCTURED MACHINE LEARNING (DATA + CONSTRAINTS)

▸ Graphical models? BNs/MRFs with 0-1 potentials                               
(e.g., MLN, Domingos, 2006) 

▸ Deep? PSDDs (Darwiche, 2013) 

▸ Inference in polynomial time wrt the circuit size 

▸ Credal? CSDDs (this paper)  

▸ Two results/algorithms: 

▸ Marginalisation? Polynomial time wrt the circuit size 

▸ Conditioning? Polynomial time for singly connected circuits



TOY EXAMPLE (FROM KISA 2013)

DATASET (WITH CONSTRAINTS): 100 STUDENTS, 4 SUBJECTS
Logic (L) - Knowledge (K) 

Probability (P) - AI (A)

L K P A #
0 0 1 0 6
0 1 1 1 10
1 0 0 0 5
1 0 1 0 1
1 1 0 0 13
1 1 1 0 8
1 1 1 1 3

‣ 16 possible joint states 

‣ 8  observed configurations 

‣ 1 configuration (all zeros)       
never observed but possible 

‣ 7 impossible configurations 

‣ 3 logical constraints:  

A ⇒ P

P ∨ L
K ⇒ A ∨ L



GRAPHICAL MODELS WITHOUT CONSTRAINTS

LEARNING BAYESIAN NETS

▸ Structural learning (e.g., P independent of K given A and L) 

▸ Bayesian learning of parameters  

▸ Joint probability mass function assigning non-zero 
probability to logically impossible events

p =
n + 1/2
N + 1
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GRAPHICAL MODELS WITH CONSTRAINTS

LOGICALLY CONSTRAINED BAYESIAN NETS

▸ Logically impossible events possible? 

▸ Frequentist/maximum likelihood?   

▸ Zero probability to logically possible events 

▸ Constraints as dummy (and leaf) children? treewidth …
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INTRODUCING CREDAL SETS AND NETS

BAYESIAN NETS FROM SMALL DATASETS

▸ BN parameters are (conditional) probabilities 

▸ p(K=0|L=1,A=1)? three observations with K=1, zero obs with K=0 

▸ Probability zero for the frequentist, p=1/8 for the Bayesian  

▸ Imprecise Probabilities? Convex set of mass functions 

▸ E.g., Walley’s IDM (1996) [0,1/4]   

▸ Bayesian nets with interval-valued parameters? 

▸ Credal nets! Harder inferences, but good approx (e.g., Antonucci 2014) 

▸ Small datasets + constraints? Constrained CNs

n
N + 1

≤ p ≤
n + 1
N + 1



CONSTRAINTS FIRST

MODELING CONSTRAINTS WITH CIRCUITS

▸ Sentential Decision Diagrams (SDDs, Darwiche, 2011) 

▸ Logical circuit implementing Boolean formulae 

▸ AND and OR gates alternating 

▸ Single formula corresponds to many SDDs 

▸ Finding smallest SDD hard, but good heuristics (Choi)



CONSTRAINTS FIRST, DATA AFTER

MODELING DATA + CONSTRAINTS WITH CIRCUITS

▸ Probabilistic Sentential Decision Diagrams (PSDDs) 

▸ SDD with probability mass functions on the OR gates 

▸ Parameters are conditional distributions 

▸ Define a factorised joint mass function by context-specific 
independence. Fast inference by propagation. 

▸ Impossible events are really impossible!



DEFINING CSDDS

MODELLING SMALL DATA + CONSTRAINTS WITH CIRCUITS

▸ Credal Sentential 
Decision Diagrams 
(CSDDs) 

▸ SDD with interval-
probabilities on the 
OR gates 

▸ CSDD semantics? 
Collection of 
consistent PSDDs 

▸ CSDD inference? 
Lower/upper bounds 
wrt consistent PSDDs



INFERENCE IN CSDDS

PROPAGATION IN IMPRECISELY ANNOTATED CIRCUITS

▸ In terms of structure PSDDs = 
SPNs 

▸ CSPNs + algs by Mauá et al.  

▸ Extending CSPNs algorithms to 
CSDDs 

▸ Marginalisation? Bottom-up 
propagation of intervals 

▸ Conditioning? Same with local 
LP on the OR gates (needs 
singly connected topology)



INFERENCE IN CSDDS

PROPAGATION IN IMPRECISELY ANNOTATED CIRCUITS

p(A = 0,P = 0) ∈ [ 540
3131

,
19
101 ]



ISSUES WITH CONDITIONING ON SETS OF MASS FUNCTIONS

CONDITIONING BY MARGINALIZATION

p(A = 0 |P = 0) =
p(A = 0,P = 0)

p(P = 0)

p(A = 0 |P = 0) ≥
p(A = 0,P = 0)

p(P = 0)

p(A = 0 |P = 0) > μ ⇔ min
p ∑

a

[I(a) − μ] p(a, P = 0) > 0

BNs and PSDDs (exact)

CNs and CSDDs (outer approx)

CNs and CSDDs (exact)



CONCLUSIONS

▸ PSDDs as a sound tool for fast structured ML 

▸ CSDDs as a new tool for sensitivity analysis in PSDD 

▸ Robust marginalisation with the same (poly) complexity 

▸ Robust conditioning with the same (poly) complexity for 
formulae based on singly connected SDDs 

▸ Multiply connected? “Open” the loop (higher complexity)



(LOTS OF) THING TO DO 

▸ Application to “credal” ML with structured spaces (multilabel 
classification, preference learning, logistics, …) 

▸ Use CSDDs to cope with missing data 

▸ Complexity results for CSDDs 

▸ Extending Choi’s library pyPSDD to CSDDs 

▸ Hybrid (structured/unstructured) models 

▸ Structural learning (trade-off small SDD / likelihood) 

▸ …




